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Abstract

After long being one of the main puzzles in asset pricing, momentum

has ironically became a case of observational equivalence. It can now be

explained both by factors proxying for mispricing and by the investment

CAPM. On top of this, q-factor theory also explains the related 52-week-

high anomaly. We note that all these recent tests are unconditional exer-

cises while the bulk of momentum profits are predictable and occur after

periods of low-volatility. Comparing asset pricing models conditionally,

when the strategies actually work, we find the unconditional fit is mis-

leading. The models fit well most of the time but not when the profits

are produced. The investment CAPM implies time-varying loadings that

are inconsistent with the data. We proxy underreaction with earnings an-

nouncement returns and analyst forecast errors and find that it markedly

decreases with volatility. This supports an underreaction channel as closer

to the heart of both anomalies.
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1 Introduction

“Effort should be focused on ruling

out alternative explanations for mo-

mentum and trying to hone in on

the“true” explanation(s) rather than

allowing the finding to get “over-

identified” via multiple stories for the

same phenomenon.”

Avanidhar Subrahmanyam

Momentum is one of the most robust and central asset pricing anomalies. Investor un-

derreaction is an often proposed behavioral explanation for the phenomenon (Jegadeesh

and Titman, 1993; Barberis, Shleifer, and Vishny, 1998; Hong and Stein, 1999). Con-

sistent with this explanation, multiple studies find that improving firm fundamentals

explain or even subsume price momentum (Daniel, Hirshleifer, and Sun, 2020; Novy-

Marx, 2015a; DeMiguel, Martin-Utrera, Nogales, and Uppal, 2020).3 But recent work

argues that momentum can also be perfectly explained as an equilibrium result with ra-

tional investors, a substantially different explanation. In an influential study, Hou, Xue,

and Zhang (2015) show that the investment CAPM explains an impressive broad range

of anomalies. Arguably, the major success of the model is explaining price momentum

– a long-standing puzzle before that. Furthermore, George, Hwang, and Li (2018) show

that an also strong relative strength strategy, 52-week high momentum, is also priced

by the investment CAPM. This is remarkable since the original economic explanation

proposed for the strategy is explicitly its ability to exploit a behavioral bias, “adjustment

and anchoring bias”, that would drive investor underreaction (George and Hwang, 2004).

So the momentum puzzle in the literature shifted. It now seems compatible with two

perspectives that are hard to reconcile and that is what is most intriguing about it.

The starting motivation of our paper is the realization that momentum is an unusual

anomaly due to its pronounced predictability using market states (Cooper, Gutierrez, and

Hameed, 2004) and its own lagged volatility (Daniel and Moskowitz, 2016; Barroso and

Santa-Clara, 2015) among other predictors. In this study, we establish this also applies to

52-week high and argue that as a result the two anomalies should be studied conditionally.

Models aiming to explain price momentum and 52-week high should address the fact that

these have no premiums at all in months following bear markets or high volatility – hence

no puzzle to explain in the first place. In fact, we find that for most of the sample,

3Lim, Sotes-Paladino, Wang, and Yao (2020) and Huang, Zhang, Zhou, and Zhu (2019) also find evi-
dence consistent with underreaction of stock prices to changes or trends in firm fundamentals. Gebhardt,
Hvidkjaer, and Swaminathan (2005) find supportive evidence for underreaction in the corporate bond
market.
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price momentum and 52-week high momentum are merely dismal investment strategies

with high volatility, extreme crash risk, and no statistically significant profitability. By

contrast, more than 70% of the profits of the momentum strategy and more than 80% of

the profits of the 52-week high strategies are realized in less than a third of the sample

periods, those after safe months (and with lower risk on top of that).It is only then that

the premiums are truly produced. We use this predictable time-variation in profits of the

two strategies to discern between the two explanations of the anomalies.

Prior studies that assess whether a model can explain price momentum or 52-week

high momentum focus on standard unconditional performance. Indeed in asset pricing

conditional models are often used when unconditional models fail (e.g. Avramov and

Chordia (2006)). That is the converse of what we do in this study. Unconditional testing

typically assumes constant risk premiums for both factors and test assets and this fails

to incorporate the observed predictablity in the strategies. In this study, we impose an

additional criterion on the assessment that is whether a model can also match the time-

varying profitability of the two anomalies. We hypothesize that if a factor model can

capture the premiums both unconditionally and conditionally, the rationale behind the

factor model comes out reinforced. Otherwise, the unconditional fit of the model is of

challenging interpretation.

The primary factor models we consider in our time-series tests include the Daniel,

Hirshleifer, and Sun (2020) behavioral factor model (BF3), the Novy-Marx (2015a)

fundamental-momentum model (NM5), the Hou, Xue, and Zhang (2015) q-factor model

(HXZ4), and the Hou, Mo, Xue, and Zhang (2020) augmented q-factor model (HXZ5),

all of which can explain price momentum and 52-week high momentum unconditionally.

The first two models explain the anomalies through earnings-surprise factors, which are

designed to capture investor underreaction to quarterly earnings announcements. The

other two models build on the neo-classical theory of investment and price the same

anomalies through factors that proxy for the marginal profitability of investment – which

is, in turn, a function of expectations of future firm growth and profitability.4

Our main set of results splits the time series of momentum returns according to lagged

6-month realized volatility in the momentum strategy, computed from daily returns, into

three bins: ‘safe’(bottom 30%), middle 40%, and ‘risky’ (top 30%). We use a holding

period of one month to define momentum returns as in the portfolios available in Ken-

neth French data library portfolios and is standard in most asset pricing tests, including

recent studies on momentum papers (e.g. Daniel and Moskowitz (2016)).5 We then run

4We focus on these models for two reasons: i) they are successful explaining momentum uncondi-
tionally as opposed to other plausible candidates such as Fama and French (1993) or Fama and French
(2015); and ii) they do not include momentum per se such as Carhart (1997) which would result in a
tautology given our research topic.

5Predictability at different horizons could conceivably be a different economic question. But in unre-
ported results we generally find that using holding periods between one and six months did not materially
change the results.
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spanning repressions in sub-samples and test for differences in alphas. If the true model

is unconditional, this empirical setting bias the tests in favor of all models, as alphas are

less likely to be significant in subsamples due to power.

The results of our conditional time-series regressions show that the good unconditional

performance of the four primary factor models is driven by their strong performance only

following high and medium levels of momentum risk. This is non-trivial as those periods

comprise 70% of the overall sample. So models fit anomalies most of the time. However,

most profits of the two strategies are realized in the other 30% of the sample that is

subsequent to safe months. The best performing model in capturing the two anomalies is

Novy-Marx (2015a)’s fundamental-momentum model. This model has in common with

BF3 a factor built with cumulative abnormal returns around earnings announcements.

But, on top of it, it includes a earnings surprise factor. This factor turns out to help

explaining the anomaly returns after safe months.6 Nevertheless, these models are not

able to fully account for the profitability of momentum and 52-week-high in safe months.

The models based on the investment CAPM also fail to explain momentum and 52-

week high when they are profitable. This poses a challenge for that explanation but does

not necessarily dismiss the economic rationale of the theory. Expected profitability and

expected investment growth, the drivers of expected returns it proposes, are unobserv-

able. Earnings-surprise factors could proxy for more than underreaction alone. They

may as well capture the very same economic fundamentals investment CAPM posits as

true drivers of expected returns. Supporting this interpretation, Liu, Whited, and Zhang

(2009) show that innovations in earnings are positively correlated with future invest-

ment growth. If this positive relation is stronger after safe months, then the pattern of

predictability would be as expected according to the investment CAPM.

To assess that possibility, we follow George, Hwang, and Li (2018) and directly exam-

ine how past returns and nearness to 52-week high are linked with future profitability and

investment growth using Fama and MacBeth (1973) predictive regressions. Strikingly, we

find that the relation between the two anomaly variables and the marginal benefits of

investment does not change much with momentum’s risk regimes. Price momentum and

price-to-the-52-week-high ratio are always (strong) predictors of firm profitability and

investment growth. They convey roughly the same information on the firm’s investment

opportunity set in safe and low months. But their correlation with expected returns in-

creases significantly after safe months. As a result, firm expected investment growth and

profitability do not speak to the observed conditionality of price momentum and 52-week

high anomalies. Furthermore, we find the 52-week high signal is less related to future

profitability after safe months. This has the opposite sign of what the investment CAPM

6On the other hand, NM5 is a model specifically designed to explain momentum while BF3 is an asset
pricing factor model able to explain a wider set of anomalies. Regardless, NM5 best fits the returns of
the two anomalies in our study when it matters.
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theory would imply.

Given the relative success of Novy-Marx (2015a) in the conditional setting, we examine

if more direct proxies for underreaction match the observed time-variation in expected

profitability of the two strategies. Several studies use quarterly announcement returns

to proxy for possible corrections in investor expectations (Jegadeesh and Titman, 1993;

La Porta, 1996; Porta, Lakonishok, Shleifer, and Vishny, 1997). We follow these and find

that when volatility in momentum is low strong (poor) past price performance or high

(low) price-to-the-52-week-high ratio signals predict better high (low) returns surrounding

the forthcoming earnings announcement date. This is consistent with underreaction being

stronger (weaker) after safe (risky) months. We also directly observe the magnitude of

analyst forecast errors close to earnings announcements. We find analysts tend to be

overly optimistic on average. Their excessive optimism is concentrated on losers and low

price-to-the-52-week-high stocks. Furthermore, the excessive optimism is much stronger

after low-volatility months.

Finally, we re-examine the relation between the two anomalies. George and Hwang

(2004)’s study uses a sample between 1963 and 2001. Its empirical setting implicitly

overweights micro- and small-cap stocks as their portfolios are equally-weighted. We

replicate their results for a longer sample with value-weighted portfolios and find that

the 52-week high strategy performs less well than conventional price momentum strategy

over the period of January 1927 through December 2019. The results of spanning tests

and cross-sectional Fama and MacBeth (1973) regressions suggest that price momentum,

in fact, fully subsumes 52-week high momentum unconditionally. This suggests that 52-

week high is only a weak form of price momentum. However, nearness to 52-week high

is not subsumed conditionally. After safe months, when the anomaly is truly there, price

momentum does not explain it. For this reason we see the 52-week high anomaly of George

and Hwang (2004) as a genuine different phenomenon than conventional momentum. This

underscores the importance of studying the conditionality of the two anomalies.

For robustness, we use the DOWN-market state variable first proposed by Cooper,

Gutierrez, and Hameed (2004) instead of the realized volatility of momentum. We find

this variable predicts a change in profitability not only for price momentum, as originally

shown, as also for 52-week high – which does not feature in the original study and therefore

offers out-of-sample evidence of robustness for Cooper, Gutierrez, and Hameed (2004)’s

seminal study.

In sum, the evidence on earnings announcement returns, analyst forecast errors, and

conditional spanning regressions is more supportive of volatility capturing time-variation

in underreaction. Our results thus generally support the underreaction economic channel

in Daniel, Hirshleifer, and Subrahmanyam (1998) and Daniel, Hirshleifer, and Sun (2020)

for momentum while documenting volatility as a robust predictor of its intensity.

The remainder of the paper is structured as follows. Section 2 reviews the relevant
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literature. Section 3 describes data sources and methodology. Section 4 shows conditional

performance of the recently proposed factor models. Section 5 explains whether the in-

vestment CAPM predicts the time-variation in payoffs of price momentum and 52-week

high momentum. Section 6 checks whether time-varying underreaction to news related to

short-term prospects of firms explains the two anomalies’s time-varying behaviors. Sec-

tion 7 re-examines the relation between price momentum and 52-week high momentum.

In Section 8, we replace the risk of momentum with market states and repeat the analyses

in Section 4. In addition, we check the optionality of 52-week high momentum. Section 9

concludes the paper.

2 Related Literature

Our paper is related to the literature on explanations of momentum. Jegadeesh and

Titman (1993) show that stocks with high returns over past three to twelve months

outperform in the following 6 months. Early explanations of momentum are mostly

behavioral. Jegadeesh and Titman (1993) find that winners have higher returns in the

following earnings announcements suggesting investor underreaction to news in prices

(and subsequent corrections in expectations) as an explanation. Barberis, Shleifer, and

Vishny (1998) (BSV) propose investor conservatism and Hong and Stein (1999) (HS)

propose gradual information diffusion of information as explanations of underreaction.

Daniel, Hirshleifer, and Subrahmanyam (1998) propose initial underreaction coupled with

delayed overreaction as explanations.

Price momentum is not the only relative strength strategy of interest. George and

Hwang (2004) find that stocks whose prices are close to or at their 52-week highs earn

higher returns than stocks whose prices are far from their 52-week highs. They further

show that nearness to the 52-week high, the common past price-level information, can

subsume the predictive power of past price changes for expected returns. Prior returns

and nearness to the 52-week high appear to be closely related, and a stock with strong

(poor) past performance seems to be more likely to have a price close to (far from) its

52-week high. However, a stock whose price is close to (far from) the 52-week high is not

necessarily a stock with strong (poor) performance in the past year, and vice versa.7

Similar to the conventional momentum strategy, the profits of the 52-week high strat-

egy have been attributed to delayed price reaction to firm-specific information due to

7To understand the differences, we can consider two simple examples. 1) A stock can start with
the 52-week high price one year ago, perform poorly over months, and then experience a positive shock
pushing its price near or above its previous 52-week high just at the formation date of the relative
strength portfolio. Conversely, a stock can persistently perform well at the beginning of the ranking
period but experience a severe negative shock pushing the price back to the starting price which is, in
turn, far from its 52-week high. Another example is that a stock can fluctuate around the 52-week high
price over the entire ranking period.
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conservatism of investors (Li and Yu, 2012). In addition, George and Hwang (2004) jus-

tify the relation between nearness to the 52-week high and market underreaction using

“adjustment and anchoring bias” of investors. Based upon the experimental evidence of

Kahneman, Slovic, Slovic, and Tversky (1982) and Ginsburgh and Van Ours (2003), they

hypothesize that traders tend to use the 52-week high as an anchor against which they

assess the potential impacts of new firm-specific information on prices.

Recently, the behavioral factor model of Daniel, Hirshleifer, and Sun (2020) (BF3)

supplements the market factor with two behavioral factors, which are designed to capture

the long and short horizon mispricing due to investors’ psychological bias. We find this

model explains in unconditional spanning regressions the two relative strength anomalies

in our study. This is mostly through the short-run underreaction (earnings-surprise) fac-

tor computed from cumulative abnormal return (CAR) around earnings announcements.

Novy-Marx (2015a) (NM5) proposes a fundamental momentum model to explain mo-

mentum. This adds to the Fama and French (1993) three factors two earnings-surprise

factors. One uses CAR as BF3 while the other is based on the most recent standardized

unexpected earnings. The earnings-surprise factors in both models are primarily designed

to account for the post-earnings announcement drift (Ball and Brown, 1968).

An alternative explanation is that price momentum and nearness to the 52-week high

proxy for risk-based risk premiums. Hou, Xue, and Zhang (2015) document that the

q-factor model based on the investment CAPM, which is first proposed by Cochrane

(1991), can capture a broad range of anomalies including momentum. Built on the

neoclassical q-theory of investment, the investment CAPM posits that expected stock

returns are positively correlated with expectations of firm profitability and investment

growth (Cochrane, 1991; Liu, Whited, and Zhang, 2009; Liu and Zhang, 2014; Hou, Xue,

and Zhang, 2015; Hou et al., 2020).

Hou, Xue, and Zhang (2015) (HXZ4) show that the q-factor model captures momen-

tum through a profitability factor sorted on firms Return on Equity. This builds on

Liu and Zhang (2014) who estimate the investment model structurally and document

that past stock performance proxy firms expected profitability and expected investment

growth. Intuitively, a firm with strong (poor) past performance is more likely to have

experienced positive (negative) productivity shocks and is also expected to be more (less)

profitable in the future. Managers of the firm have incentives to invest in more (fewer)

projects, as marginal benefits are higher (lower). Assuming an upward sloping marginal

cost of capital for the firm, this raises (reduces) its equilibrium cost of capital on incre-

mental projects.

HXZ4 outperforms the popular Fama and French (1993) 3-factor model and the Fama

and French (2015) 5-factor model in explaining momentum-like anomalies. On top of

this, George, Hwang, and Li (2018) find that the q-factor model of Hou, Xue, and Zhang

(2015) is robust to explaining the 52-week high anomaly. Furthermore, they find that
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the profitability of this strategy comes from the positive relation between nearness to the

52 week high and the marginal benefit of investment, which is, in turn, determined by

expected profitability and expected investment growth.

But ROE is perhaps a weak proxy for expected investment growth. Recently, Hou

et al. (2020) argue the empirical q-model can be further improved using three predictors

of future investment growth, which are Tobin’s q, operating cash flows and change in

return on equity. With these they recover firm growth expectations and augment the

original q-factor model with a new factor sorted on these.

We contribute to the literature on factor model explanations of momentum adopting

a conditional setting. There is compelling evidence of predictability for the returns and

risk of price momentum. Cooper, Gutierrez, and Hameed (2004)’s seminal study finds

that momentum strategies are profitable only in the “UP” market state, which is defined

as non-negative average market returns over the past three years. Stivers and Sun (2010)

demonstrate that momentum profits are negatively related to the cross-sectional return

dispersion. Wang and Xu (2015) show that the performance of momentum strategies is

significantly attenuated following high market volatility states. Antoniou, Doukas, and

Subrahmanyam (2013) posit that momentum profits exists only in times of high senti-

ment. Avramov, Cheng, and Hameed (2016) find that momentum strategies are more

profitable in liquid market states. Huang (2019) find that momentum profits are nega-

tively correlated with the momentum gap, which is defined as the formation period return

difference between past winners and losers. Barroso and Santa-Clara (2015) find that the

risk of price momentum, defined as the realized variance of daily momentum returns,

is strongly autocorrelated. Therefore, volatility of momentum predicts itself positively.

Furthermore, it predicts the returns of the strategy negatively. On top of this, Barroso,

Edelen, and Karehnke (2019) recently show that price momentum volatility predicts the

skewness and excess kurtosis of the strategy. This strong predictive relation with all four

first moments of the factor make it a particular strong predictor of the strategy perfor-

mance. Barroso and Santa-Clara (2015) propose a volatility-scaling risk management

strategy exploiting this predictability. It scales the self-financing portfolio to a constant

target volatility level, investing more after periods of low risk. This strategy almost dou-

bles the Sharpe ratio of the unmanaged strategy. Similar volatility-scaling momentum

strategies have since featured in multiple studies (Daniel and Moskowitz, 2016; Novy-

Marx, 2015a; Grobys, Ruotsalainen, and Äijö, 2018; Hanauer and Windmüller, 2020). In

this study, we take realized volatility of momentum and, instead of trying to improve

the Sharpe ratio of the strategy, or manage its tail risk, study its implications for the

conditional fit of asset pricing models purporting to explain the anomaly unconditionally.

The purpose is to understand what contributes to the difference in profits in high- versus

low-risk months, and whether this difference is useful for distinguishing between different

explanations for the anomaly.
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We contribute to a growing literature on the 52-week high strategy. We are unaware

of any study conducting a systematic examination of the conditionality of its profits.

We find that the 52-week high strategy shares a common set of predictors with the

price momentum strategy. In particular, payoffs of the 52-week high strategy depend on

lagged realized volatility of momentum and market states. Also, the strategy in “DOWN”

markets is effectively a call option written on the market, just as (Daniel and Moskowitz,

2016) first show for price momentum.

3 Data and Methodology

3.1 Data

We obtain stock market data from the Centre for Research in Security Prices (CRSP) and

accounting information from the Compustat Annual and Quarterly Fundamental Files.

Our sample includes all common stocks with CRSP share code of 10 or 11 traded on

the NYSE, AMEX and NASDAQ (CRSP exchange codes 1, 2 and 3). We adjust CRSP

returns for delisting events using the procedure of Beaver, McNichols, and Price (2007).

Following Fama and French (2006), Hou, Xue, and Zhang (2015), George, Hwang, and

Li (2018) and Hou, Xue, and Zhang (2020), we exclude financial firms with Standard

Industrial Classification (SIC) codes between 6000 and 6999. The main sample period

is from July 1972 to December 2019. The starting date is restricted by the availability

of quarterly earnings announcement dates, as well as the behavioral factors, while the

ending date is restricted by the availability of the behavioral factors.

3.2 Variable and Portfolio construction

The two primary variables we consider are the cumulative prior 11-month return from

month t − 12 to t − 2 (r2,12) and the ratio of the closing price in month t − 2 of a

stock to its 52-week high price, adjusted by stock splits and stock dividends, over month

t − 13 to t − 2 (pth). At the end of each month t − 1, all common stocks8 traded on

NYSE, AMEX and NASDAQ are sorted into deciles based on their r2,12 (pth) using NYSE

breakpoints. The purpose of using NYSE breakpoints is to prevent the extreme deciles

from being dominated by microcaps (Hou, Xue, and Zhang, 2020). We follow Hou, Xue,

and Zhang (2015) in using pth smaller than one to form the NYSE breakpoints as there

are a disproportionally large number of stocks approaching the 52-week high at the same

time with pth equal to one. Following George, Hwang, and Li (2018) and Daniel and

Moskowitz (2016), we skip month t− 1 for both anomalies to avoid the effects of short-

term reversal (Jegadeesh, 1990). We calculate monthly value-weighted returns of each

8We exclude the stocks of financial firms and the stocks with fewer than 11 (12) months of return
(price) history.
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decile in month t using the market equity at the end of month t−1 as weights. Similarly,

we calculate daily value-weighted returns of each decile on each trading day of month t

using the beginning-of-day market equity as weights.9 The decile portfolios are held for

one month and rebalanced at the end of each month. The holding period of six months

is also commonly used in the momentum and the 52-week high literature. We choose

one-month holding period to better identify the state of the holding month because of

the one-to-one relationship between a formation period and a holding period under this

method.

The main two zero-cost portfolios of interest are high-minus-low deciles on r2,12 and

pth, denoted by WML and PTH, respectively. The main predictor of the two strategies

we consider is the realised volatility of WML. Following Barroso and Santa-Clara (2015),

at the beginning of each month t, we compute the realised volatility, σ̂2
t , using daily

returns in the previous 126 trading days. Specifically,

σ̂2
WML,t = 21

125∑
j=0

r2
WML,dt−1−j

/126, (1)

where {rwml,d}Dd=1 and {dt}Tt=1 are the daily returns and the time series of the dates of

the dates of the last trading days of each month.

Except for the lag-ROE, ∆ROE, SUE and CAR4 factors, all other monthly factor

returns are either obtained from Kenneth French’s Web site or provided by the relevant

authors10. We construct the lag-ROE and ∆ROE factors following the methodology of

Novy-Marx (2015b). First, we decompose return-on-equity (roe11) into lagged earnings-

to-market equity and earnings-innovations-to-book equity:

roe =
IBQt

BEQt−1

=
IBQt−4

BEQt−1

+
IBQt − IBQt−4

BEQt−1

= lagged− E/B + ∆E/B (2)

Following Hou, Xue, and Zhang (2015), roe for quarter t is the quarterly income before

extraordinary items(IBQt) divided by 1-quarter-lagged book equity (BEQt−1). IBQt−4

is the quarterly income before extraordinary items for quarter t− 4. At the end of each

month t − 1, we construct the lag-ROE and ∆ROE factors on the basis of the latest

lagged-E/B and ∆ E/B, respectively. Analogous to the construction methodology of the

9We employ the daily and monthly WML returns from Lu Zhang’s data library for the period 1967-
2019. For the months before 1967, we use our own WML return series. The correlation between our
monthly (daily) WML returns and the series from Lu Zhang’s data library over 1967-2019 is 99.6%
(99.3%). Different from Hou, Xue, and Zhang (2020), we do not exclude the firms with negative equity to
avoid potential errors associated to the merging between CRSP and Compustat databases.The correlation
between our PTH portfolio and the corresponding portfolio used in George, Hwang, and Li (2018) over
1972-2014 is 99.9%.

10We are grateful to all these authors for making their data available.
11We use lowercase letters in italics to represent a stock characteristic and capital letters to denote

factor portfolios and high-minus-low decile on the characteristic.
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value (HML) and momentum factors (UMD), we use six value-weighted portfolios, which

are the intersections of 2 portfolios formed on size and 3 portfolios formed on lagged-E/B

(∆E/B), to construct the lag-ROE (∆ROE) factor. The monthly size breakpoint is the

median NYSE market equity, while the monthly lagged-E/B (∆E/B) breakpoints are

the 30th and 70th NYSE percentiles. The lag-ROE (∆ROE) factor return is the equal-

weighted return on the two high lagged-E/B portfolios minus the equal-weighted return

on the two low lagged-E/B portfolios.

Te construction of two fundamental-momentum factors, SUE and CAR4, are very

similar to the methodology used in Novy-Marx (2015a). Following Foster, Olsen, and

Shevlin (1984) and Hou, Xue, and Zhang (2020), we calculate the standardized unex-

pected earnings (sue) as:

sue =
EPSPXQadj

t − E(EPSPXQadj
t )

std(EPSPXQadj
t − E(EPSPXQadj

t ))
. (3)

We assume EPSPXQadj
t , the split-adjusted earnings per share for quarter t, following a

seasonal random walk, which is

E(EPSPXQadj
t ) = EPSPXQadj

t−4. (4)

EPSPXQadj
t−4 is the split-adjusted earnings per share for quarter t − 4. We use the

quarterly earnings innovation over the past eight (at least six) announcements to com-

pute the standard deviation of the quarterly innovations, denoted by std(EPSPXQadj
t −

E(EPSPXQadj
t )). Following Chan, Jegadeesh, and Lakonishok (1996),Daniel, Hirsh-

leifer, and Sun (2020) and Hou, Xue, and Zhang (2020), we calculate cumulative abnor-

mal return surrounding the quarterly earnings announcement date from the two trading

days preceding the announcement to the one trading day after that (car4):

car4 =
+1∑
d=−2

rid − rmd, (5)

where rid is stock i’s return on day d, rmd is the CRSP value-weighted market index

return on day d, and d = 0 refers to the earnings announcement date. When an earnings

announcement day is a non-trading day, we regard the first trading day subsequent to

the earnings announcement as day 0. We require full return history over the 4-day

event window, and the 4-day cumulative abnormal return of a stock is assumed to be

available at the end of d = 1. At the end of each month t − 1, we construct the SUE

and CAR4 factors on the basis of the most recent sue and car4, respectively. We use six

value-weighted portfolios, which are the intersections of 2 portfolios formed on size and 3

portfolios formed on sue (car4) , to construct the SUE (CAR4) factor. The monthly size
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breakpoint is the median NYSE market equity, while the monthly sue (car4) breakpoints

are the 30th and 70th NYSE percentiles. The SUE (CAR4) factor return is the equal-

weighted return on the two high sue (car4) portfolios minus the equal-weighted return

on the two low sue (car4) portfolios.

All factor portfolios are rebalanced monthly. The quarterly earnings data are assumed

to be publicly available on the last trading day of the month during which they are

announced.

4 Time-Series Analysis

4.1 Descriptive Statistics

Table 1 reports descriptive statistics of WML, PTH and the market risk factor. Panel

A shows the performance of each factor from 1927:01 to 2019:12. The high-minus-low

price momentum decile earns on average 13.84% per year with a (annualized) Sharpe

ratio higher than the market and PTH portfolios. However, its high excess kurtosis of

19.49 with a large negative skew of -2.49 suggests an extremely fat left tail, leading to

occasional crashes of the strategy as shown by Daniel and Moskowitz (2016) and Barroso

and Santa-Clara (2015). PTH performs worse. It not only yields the lower average returns

and Sharpe ratio but also has a very fat left tail like WML. Panel B reports the statistics

over a shorter sample period 1972:07 to 2019:12. In the short sample, the performance

of PTH improves dramatically with the mean returns increasing to 8.05% per year and

the Sharpe ratio almost doubling.

[Insert Table 1 near here]

4.2 Factor-adjusted Returns and Volatility States

4.2.1 Unconditional and Conditional Performance of Conventional Factor

Models

Table 2 reports unconditional raw and factor-adjusted returns of WML and PTH (shown

in the last column), and the values conditional on the lagged realized volatility of WML.

We split each sample period into three volatility states. The top (bottom) 30% observa-

tions of the realized volatility series are the High-RV (Low-RV) periods, and the remain-

ing periods are the Medium-RV periods. The factor models considered here include: the

market model (CAPM) proposed by Sharpe (1964), Lintner (1965) and Black (1972), the

Fama and French (1993) three-factor model (FF3), the Carhart (1997) 4-factor model

(Carhart4) consisting of the FF3 factors plus the Momentum factor (UMD), and the
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Fama and French (2015) five-factor model (FF5). The FF3 factors include the market

excess return (MKT), the return of small firms in excess of big firms (SMB) and the return

of value firms in excess of growth firms (HML). FF5 combines the operating profitability

and investment factors with the FF3 factors. These two new factors incorporate stock

return predictors previously documented by Titman, Wei, and Xie (2003) and Novy-Marx

(2013).

The last column of Table 2 shows that WML earns statistically positive returns on

average in both long and short samples. In contrast, the raw return of PTH is not

significantly different from zero over the period 1927:01 to 2019:12, though it becomes

significant at the 5% level in the short sample. The CAPM, FF3 and FF5 factor models

fail to explain the WML and PTH portfolios, and their returns are even higher after

adjusting for the risk factors of any of the three models. Not surprisingly, FF3 and FF5

have limited explanatory power for those short-term momentum-like anomalies as the

two models are designed to capture the long-term stock anomalies (Daniel, Hirshleifer,

and Sun, 2020). Consistent with George, Hwang, and Li (2018)12, we find that Carhart4

can capture the 52-week high anomaly unconditionally with insignificant alphas equal to

0.22 (t=1.76) and 0.20 (t=1.24) in the 1927-2019 and 1972-2019 samples, respectively, if

the significance level is set to 5%.

The first four columns of Table 2 show the time-varying performance of WML and

PTH. The general pattern is that WML and PTH tend to be stronger following safe

months and weaker subsequent to risky months. This is patent immediately for raw

average returns. Over the most recent sample, 73% of the profits of WML occur in less

than a third of the sample, only after safe months (30%× 2.62/1.08). For PTH a similar

computation yields an even more impressive 85%. So, most of the profits occur in a

relatively small subsample. The natural converse of this statement is that in most of

the sample the anomalies have little profitability. Except for the FF3-alpha of PTH in

the 1927-2019 sample, all raw and risk-adjusted returns are statistically indistinguishable

from zero for the portfolios formed in High-RV months, and both the factor models

available in the full sample (CAPM, FF3 and Carhart 4) and FF5 can capture the two

anomalies in after risky months. In contrast, all factor-adjusted returns in safe states

and some factor-adjusted returns in normal states are positively significant. Hence, the

unconditional significant positive alphas of WML and PTH are mainly driven by the

strong performance of the two anomalies in the safe subsample. In addition to the

regression results for each volatility state, we test the difference in alphas between the

Low- and High-RV subsamples (i.e. “Low − High”). Except for the Carhart4-alpha, all

alphas are highly significant suggesting that the associated factor models fail to capture

the time-varying behaviors of WML and PTH. Another important takeaway from this

12The holding period matters for the performance of PTH relative to Carhart4. For instance, if the
high-minus-low decile on pth is held for 6 months, the Carhart4-alpha will become positively significant.
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table is that the realized volatility of WML, as one of predictors of WML payoffs, plays

an important role in the profitability of PTH. Additionally, we find some other predictors

of momentum payoffs such as market states, market volatility, cross-sectional return

dispersion, momentum gap and investors’ sentiment, can also predict PTH profits. The

corresponding results are reported in Section 8 and in the Appendix.

[Insert Table 2 near here]

4.2.2 Unconditional Performance of New Factor Models

In this section, we report the unconditional performance of new factor models in ex-

plaining PTH and WML. As prior studies have sufficiently discussed the unconditional

factor-adjusted returns of WML, we focus our discussions on PTH and briefly report

the results of WML. George, Hwang, and Li (2018) document that the q-factor model

(HXZ4) proposed by Hou, Xue, and Zhang (2015) outperforms all other factor models

they consider in capturing the 52-week high anomaly. HXZ4 includes factors of market

(MKT), size (ME), investment (IA) and profitability (ROE). Besides the factor models

considered in their study, we examine other factor models recently proposed in the liter-

ature. Specifically, we consider the Hou et al. (2020) q-factor model (HXZ5) augmented

with the expected growth factor (EG), the Daniel, Hirshleifer, and Sun (2020) behavioral

factor model (BF3) and the Fama and French (2018) 6-factor model. BF3 consists of the

market factor (MKT) and the two behavioral factors including the financing factor (FIN)

and the post-earnings announcement drift factor (PEAD), which are designed to capture

the long-term persistent mispricing of stocks and the short-term market underreaction,

respectively. FF6 supplements the FF5 factors with the momentum factor. The remain-

ing two models we examine are not factor models known to explain a broad range of

anomalies. Instead, they are closely related to the momentum-like anomalies. As shown

above, to examine the sources of the profitability factor (ROE)’s pricing power for mo-

mentum, Novy-Marx (2015b) decomposes the profitability factor (ROE) of HXZ4 into a

low frequency earnings profitability factor (lag-ROE) and a post-earnings announcement

drift factor (∆ROE), and shows that HXZ4 prices the momentum strategy through the

earnings-surprise channel. This alternative HXZ4 model is denoted by HXZ4a. Novy-

Marx (2015a) further introduces a fundamental-momentum factor model on the basis of

the FF3 factors and two earnings-surprise factors (SUE and CAR413) and demonstrates

13Novy-Marx (2015a) uses CAR3, the cumulative abnormal return over the 3-day window starting
from the day preceding the earnings announcement and ending at the day following the announcement.
To keep consistent with the recent literate such as (Hou, Xue, and Zhang, 2015; Hou et al., 2020; Hou,
Xue, and Zhang, 2020; Daniel, Hirshleifer, and Sun, 2020), we replace CAR3 with CAR4. Unlike Daniel,
Hirshleifer, and Sun (2020) using 20% and 80% breakpoints for NYSE firms to sort the stocks, we use
standard 30% and 70% breakpoints for NYSE firms to construct CAR4 factor, as well as SUE factor.
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that price momentum is fully captured by momentum in firm fundamentals. Each time-

series regression in Table 2 fits an unconditional factor model to one of the portfolios we

consider. Specifically, time-series regressions are of the form:

Ri,t = α + β′Xt + εt, (6)

where Ri,t is the monthly excess returns on a portfolio i, and Xt is a column vector

containing monthly excess returns to factors of a model.

[Insert Table 3 near here]

In contrast to Table 2, Table 3 shows the factor models that capture or dominate the two

anomalies unconditionally. Except for BF3-alpha of PTH, all alphas are indistinguishable

from zero. With this model the 52-week high anomaly is mispriced unconditionally with

a negative alpha. Interestingly, the anomaly has significant positive loadings on the

financing factor (FIN). Given that FIN is designed to capture the long-horizon mispricing

of stocks (Daniel, Hirshleifer, and Sun, 2020), this suggests pth also reflects long-run

mispricing to some extent. In the next three specifications, we examine the unconditional

performance of HXZ4 and its variants in explaining PTH. Overall, q-factor models succeed

in capturing PTH unconditionally. Moreover, similar to the finding of Novy-Marx (2015b)

with regard to WML, we find that HXZ4 captures PTH unconditionally only through

the earnings-surprise component of the ROE factor. With a t-stat of 0.88, lag ROE is

irrelevant to explain the profitability of PTH. Among these candidate models, as shown in

the next column, FF6 is the best performer in explaining the 52-week high anomaly with

the lowest alpha (0.07) in absolute terms and highest adjusted R-squared (78%). Not

surprisingly, PTH has a highly significant positive exposure to the momentum factor as

the correlation between the high-minus-low deciles on the two anomalies is approximately

80%.

The regression results of WML are generally consistent with the literature. All alphas

are insignificant. HXZ4a has the lowest alpha in absolute value. HXZ4a and NM5 have the

highest adjusted R-squared, suggesting that the inclusion of earnings-surprise factors can

dramatically improve the ability to fit time variation in the strategy returns. Another fact

worth mentioning is that after controlling for earnings surprises, the well-known negative

exposure of WML to the value factor disappears.

4.2.3 Conditional performance of the factor models that subsume WML and

PTH unconditionally

As we do in Table 2, we split the 1972-2019 sample into three volatility states in Table 4.

In panel A, for each volatility state, we use Equation 6 to fit the factor models that are
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able to explain unconditionally at least one of the two anomalies. Splitting the sample

biases against finding statistically significant mispricing as the number of observations in

each subsample tends to be smaller. In Panel B, we employ the following specification14

to test the equality of alphas and factor loadings across Low- and High-RV states:

Ri,t = α0 + αlowIlow,t−1 + αmediumImedium,t−1 +
∑
j

βj,0Fj,t

+
∑
j

(βj,lowFj,tIlow,t−1 + βj,mediumFj,tImedium,t−1) + εt, (7)

where Ilow,t−1 (Imedium,t−1) is an ex-ante Low-RV (Medium-RV) indicator that equals one

if the realized volatility of WML in month t− 1 is in the bottom 30% (middle 40%), and

Fj,t is the excess returns of factor j in month t.

We find that all factor models, subsume the returns of PTH following High-RV and

even Medium-RV months. For BF3, the intercept of PTH is even marginally significantly

negative after risk months. The adjusted R-squared following risky months for all models

is always higher than its counterpart subsequent to safe months. On the other hand, in

the Low-RV subsample, PTH earns significant positive factor-adjusted returns of 0.99%,

1.09%, 0.89%, 0.72%, 0.48%, 0.56 under BF3, HXZ4, HXZ4a, HXZ5, FF6, and NM5

models, respectively.

Table 4 shows that the significant negative unconditional BF3-alpha of PTH observed

in Table 3 can be misleading. The factor-adjusted returns of PTH are (marginally)

negatively significant following risky and normal months. In contrast, PTH earns a

highly significant positive BF3-alpha of 0.99% per month with a t-statistic of 3.20 in the

Low-RV subsample. As shown in Panel B of Table 4, BF3-alpha of the PTH portfolio

following Low-RV months is 2.07% higher than the alpha following High-RV months,

with a t-statistic of 2.90 on the difference. Furthermore, with the decrease in momentum

risk, the 52-week high strategy has less exposure to the short-term behavioral factor. The

changes in loadings on the PEAD factor across High- and Low-RV states are significant at

1% level (Panel B of Table 4). Next, we evaluate the conditional performance of q-theory-

related models. Following safe months, these models lose their pricing power for PTH.

The anomaly also shows less exposure to the profitability and size factors than in risky

months. Panel B of Table 4 further shows that these changes are statistically significant.

Hence, both the success of q-factor models in capturing PTH unconditionally and the

co-movement of PTH with the ROE factor are driven by the risky subsample where

PTH cannot generate any premium. This shows that the returns of the strategy and its

loadings with respect to the q-factor models basically come from two separate samples.15

14It is also used in the equality tests of Table 2
15Barroso, Detzel, and Maio (2017) find similar results for low-risk anomalies with the Fama and

French (2018) 6-factor model.
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As a best performer in explaining PTH unconditionally, FF6 produces a significantly

positive alpha for PTH subsequent to Low-RV months; however, FF6-alphas of PTH in

Low- and High-RV states are not statistically different from zero (0.19% difference with

t-statistic of 0.45). Besides, the loadings of PTH on the momentum and value factors

are smaller after safe months. The momentum loading of PTH is 0.85 with a very large

t-statistic of 12.78 after safe months, but it is 0.48 lower than the loading following risky

months with a t-statistics of 3.89 on the difference. The value loading of PTH exhibits

a similar pattern to the loading on momentum. The only difference is that the strategy

does not co-move with the value factor after safe months, suggesting that the positive

exposure of PTH to the value factor comes from only after risky months.

Finally, we examine the performance of NM5 conditioning on risk. This is the best

performing model to explain the anomaly with the lowest t-statistic of 2.00. After safe

months, SUE seems important to explain the returns of PTH, with a t-statistic on the

loading of 5.23. The importance of SUE is highlighted when comparing with BF3 which

also uses a PEAD factor but built only with CAR. It could be argued that the economic

intuition of the PEAD factor is very similar to SUE as both result from earnings an-

nouncements. But, empirically, PEAD misses the SUE information considered in NM5.

This suggests that fundamental momentum is important to explain PTH, and CAR alone

does not capture all the information in changing firm fundamentals.

[Insert Table 4 near here]

In Table 5, we examine the conditional performance of WML. Similar to what we observe

in Table 4, all factor models that can capture WML unconditionally can explain it in the

High- and Medium-RV states as well; however, following Low-RV months, all models fail

to capture the momentum strategy, and NM5 is the best performer with the lowest factor-

adjusted return (0.81%) and t-statistic. Following non-Low-RV months, BF3 captures

momentum through the PEAD factor. In the Low-RV subsample, in addition to the

positive exposure to the PEAD factor, WML is positively exposed to the financing factor,

which is designed to reflect the correction of overconfidence-driven mispricing.

The three q-theory-related models capture WML poorly in the Low-RV subsample,

and the loading of WML on the ROE and lag-ROE factors are monotonically decreasing

with the reduction of the realized volatility. The inclusion of the expected growth factor

(EG) does attenuate the magnitude and significance of the alpha compared to HXZ4 but

the alpha is still strongly significant after safe months with a t-stat of 3.45.

Panel B of Table 5 confirms the time-varying feature of the factor-adjusted returns of

WML. For all models, the alphas of WML increase significantly after safe months relative

to risky months. The differences are economically important, from 1.80% to 2.49% per

months, and are all statistically significant at the 1% level. Notably, NM5, which is the
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best performing model in explaining the WML portfolio conditionally, still fails to explain

why the NM5-alpha of WML in the Low-RV subsample is significantly higher than in

the High-RV subsample. So price momentum is a much stronger phenomenon after low

volatility months and none of the models in our study seems able to explain that.16 Next,

we look more closely to whether a time varying relation between stock price signals and

the marginal benefit of firm investment can account for excessive predictability in WML

and PTH.

[Insert Table 5 near here]

5 Does q-theory account for time variation in WML

and PTH profits?

Liu and Zhang (2014) use a structural estimation procedure to examine the relations

between momentum formation returns and the two components of the marginal bene-

fit of investment: expected investment growth and expected profitability, while George,

Hwang, and Li (2018) use Fama and MacBeth (1973) regressions combined with time-

series regressions to investigate the relations. The two studies show that past returns

and nearness to the 52-week high are indicators of future investment growth and future

profitability. According to the results of the conditional time-series regressions in Sec-

tion 4, the time-varying behaviors of the price momentum and 52-week high strategies

cannot be fully captured by the q-factor models derived from the investment CAPM.

As expected investment growth and expected profitability of a firm are unobservable,

we have to use proxies for the two variables (EG and ROE). This raises the issue of

a potential bias due to inefficient proxies. In this section, we use Fama and MacBeth

(1973) predictive regressions to directly examine whether the relations between the two

anomalies and expected profitability or expected investment growth change with the risk

of momentum. If the investment CAPM can explain the two anomalies conditionally,

we should expect stronger (weaker) positive relations between the two anomalies price

signals and the marginal benefit of investment following safe (risky) months.

According to Hou et al. (2020) and Liu and Zhang (2014), in a multi-period world

without leverage and tax costs, expected stock returns, Et[r
S
it], can be expressed as

Et[r
S
it] =

κEt[
Yit+1

Kit+1
] + a

2
Et[(

Iit+1

Kit+1
)2]

1 + a( Iit
Kit

)
+

(1− δit+1)[1 + aEt[
Iit+1

Kit+1
]

1 + a( Iit
Kit

)

= Expected dividend yield+ Expected capital gain

(8)

16On top of this, the risk of momentum has similar predictive power for WML in the long sample from
1927 to 1972, before the main sample in our study, and when none of the factors related to earnings
announcements or the q-factor models are available.
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where κ and δ are capital’s share of output and the depreciation rate, respectively.

Et[
Yit+1

Kit+1
] is the expected marginal profits of capital (i.e. expected profitability), a

2
Et[(

Iit+1

Kit+1
)2]

is the expected marginal reduction in adjustment costs, and 1 + a( Iit
Kit

) is the marginal

costs of current investment (i.e. current investment-to-assets).

The three terms constitute the “dividend yield” component of the expected stock

return, which is also the two-period (static) investment CAPM derived in Hou, Xue, and

Zhang (2015). In a multi-period framework, we need an additional component of “capital

gain” expressed by
(1−δit+1)[1+aEt[

Iit+1
Kit+1

]]

1+a(
Iit
Kit

)
in the equation. As shown in Cochrane (1991),

the term is proportional to the expected investment-to-assets growth, i.e.

(1− δit+1)[1 + aEt[
Iit+1

Kit+1
]]

1 + a( Iit
Kit

)
∝
Et[

Iit+1

Kit+1
]

Iit
Kit

. (9)

We measure the expected profitability using the forthcoming annual ROE (FROE), which

is the ratio of income before extraordinary items over one-year-lagged book equity. Fol-

lowing Liu and Zhang (2014) and George, Hwang, and Li (2018)17, we measure the

expected investment growth as forthcoming annual growth in the annual investment-to-

capital ratio (FIG), which is

FIGi,t+1 = log

(
1 +

Ii,t+1

Ki,t+1

1 +
Ii,t
Ki,t

)
, (10)

where Ii,t (Ii,t+1) is capital expenditures (Compustat item CAPX) minus sales of property,

plant, and equipment (Compustat item SPPE, set to zero if missing) over the course of

fiscal year t (t + 1) for firm i, and Ki,t (Ki,t+1) is net property, plant and equipment

(Compustat item PPENT) at the beginning of fiscal year t (t + 1). As a firm’s annual

investment can be negative and annual investment-to-capital (I/K) is bounded between

−1 and 1, we add 1 to both the numerator and denominator to avoid the situation that

an increase in investment is assigned a negative number. We use the natural logarithm to

allow the measure to vary from negative to positive. We follow the methodology of Liu

and Zhang (2014) and George, Hwang, and Li (2018) to map the two annual measures,

FROE and FIG, to the monthly measure, stock return (FRET), in time. Specifically, we

match the two annual measures of fiscal year ending in month t with the monthly stock

returns from t−17 to t−6. For instance, for a firm with a fiscal year ending in December,

its monthly stock returns from July of year t to June of t + 1 are matched with FROE

and FIG of December of year t+ 1. We implement Fama and MacBeth (1973) predictive

17Hou et al. (2020) measure the expected investment growth using the forthcoming investment-to-assets
in excess of current investment-to-assets. Our results are robust to this alternative measure.
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regression in the form of:

yi,t = α + β1r2,12 + β′cXi,t−1 + εi,t (11)

yi,t = α + β1(ptht−2) + β′cXi,t−1 + εi,t (12)

where yi,t is a dependent variable of stock i in month t, Xi,t−1 is a vector of control

variables in month t − 1, r2,12 is the cumulative return between t − 12 and t − 2, and

ptht−2 is the ratio of monthly closing price in month t − 2 to its 52-week (until t − 13)

high price. Following George, Hwang, and Li (2018), Harvey and Liu (2019) and Hou,

Xue, and Zhang (2020), we estimate the cross-sectional regression models via weighted

least squares with market equity in month t − 1 as weights to mitigate the effects of

microcaps. Independent variables at an annual frequency with fiscal year ending in year

t−1 are assumed to be available at the end of June of year t. The quarterly earnings data

are assumed to be available at the end of the month during which they are announced.

Except for FRET, all variables are winsorized at the 1-99% level. The sample period runs

from July 1972 to December 2019, which are the same as the sample period used in time-

series regressions. All t-statistics are adjusted for Heteroskedasticity and autocorrelation

(Newey and West, 1987) where the number of lags is automatically selected following the

procedure specified in Newey and West (1994).

In Table 6, we reproduce the results documented in Liu and Zhang (2014) and George,

Hwang, and Li (2018). The first four specifications provide results of Fama and MacBeth

(1973) regressions of future stock returns onto r2,12 or pth. Following Hou, Xue, and

Zhang (2020), we use univariate regressions in specifications (1) and (2). To account for

the size, value and short-term reversal effects, we add three control variables: the log of

market equity(Ln(ME)), the log of book-to-market ratio (Ln(B/M)) and prior month’s

returns (r0,1) in specifications three and four. The first two specifications show that the

expected stock returns are positively correlated with momentum’s formation returns and

nearness of price to 52-week high. As shown in the next two specifications, the inclusion

of three control variables does not subsume the explanatory power of r2,12 and pth for

cross-sectional variation in expected stock returns. The specifications (5)-(8) present the

coefficient estimates of expected investment growth, one of the components of marginal

benefit of investment, on prior performance or pth. Univariate regression results show that

both past performance and pth are strong indicators of future investment growth. Results

of specification (7) and (8) further suggest that r2,12 and pth contain information about

future investment growth beyond the information contained in the current investment

level (IA) and current profitability (ROE). The last specifications report the coefficient

estimates of expected profitability, the other component of marginal benefit of investment,

on prior performance or pth. The results from univariate regressions show that r2,12

and pth are also strong predictors of future profitability. Furthermore they can provide
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some unique information about future profitability that is not contained in the current

profitability (ROE).

[Insert Table 6 near here]

Table 7 provides results of changes in coefficient estimates on past performance and pth

between Low- and High-RV subsamples. We find that the positive relations between

past performance and expected investment growth as well as expected profitability are

time-invariant. Similarly, the relation between pth and expected profitability is constant

across different volatility states, and the relation between pth and expected profitability

is even weaker following safe months. The difference is statistically significant at the

1% level with a t-stat of -2.06 and it has the opposite sign of what would be needed

to reconcile q-theory with the pattern of predictability. Moreover, in unreported tests,

the coefficient estimates of expected stock returns on either r2,12 or pth are statistically

indistinguishable from zero following High-RV months; however, the relations between

both anomaly variables and the marginal profit of investment are still significantly positive

in this subsample. These results contradict the implications of the investment CAPM, and

suggest that the time-varying behavior of WML and PTH portfolios cannot be attributed

to manager’s optimal alignment of investment policies with the cost of capital.

[Insert Table 7 near here]

6 Quarterly earnings announcement returns, Ana-

lyst forecast errors and Time-varying performance

of WML and PTH

6.1 Upcoming quarterly earnings announcements

In this section, we examine more directly whether past returns and nearness to the 52-

week high are proxies for investors’ underreaction to information about future earnings.

Past winners (losers) or high (low)-pth stocks are more likely to have favourable (un-

favourable) news about forthcoming earnings in the recent past. Due to psychological

bias of investors such as conservatism and “adjustment and anchoring bias,” the infor-

mation might not be fully incorporated into the price before the earnings are actually

announced. Hence, past winners (losers) or high (low)-pth stocks should realise positive

(negative) returns surrounding the forthcoming quarterly earnings announcement. Je-

gadeesh and Titman (1993) document that about 25% of the returns of the zero-cost
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momentum portfolio over a 6-month holding period are realized surrounding quarterly

earnings announcements. We perform a similar assessment.

The two measures we consider are the 4-day cumulative abnormal return (FCAR4)

and the 4-day cumulative raw return (FCR4) around the forthcoming quarterly earnings

announcement date. Different from Jegadeesh and Titman (1993) who report the an-

nouncement returns of past winners in excess of the announcement returns of past losers

unconditionally, we conduct univariate monthly Fama and MacBeth (1973) predictive re-

gressions of FCAR4 or FCR4 on four different explanatory variables conditional on lagged

volatility of WML. Apart from the two main variables of interest, r2,12 and pth, we include

two earnings surprise measures which are the most recent standardized unexpected earn-

ings (sue) and the 4-day cumulative abnormal return around the most recent earnings

announcement date (car4). These two measures are also employed to construct earnings-

surprise factors under Novy-Marx (2015a) fundamental-momentum model. Adding them

results in a higher bar for price signals than in Jegadeesh and Titman (1993) original

setting as we control for direct proxies of lagged innovations in fundamentals.

The results from Table 8 show that prior returns and nearness to the 52-week high are

more strongly related to forthcoming quarterly earnings announcements returns following

safe (i.e. Low-RV) months than after other months, and they lose their predictive power

for future announcement returns following High-RV months. In fact, after risky months,

none of the variables, including the SUE and CAR controls, predicts reactions to earnings

announcements. Evidence for predictability seems generally more compelling after safe

months. More importantly, the time-variation in predictive power of the two anomaly

variables for announcement returns across volatility states mirrors the time-varying rela-

tions between the two anomaly variables and future stock returns. This suggests that the

profitability of the price momentum and 52-week high strategies depends on how well the

two associated stock characteristics can proxy for investor underreaction to information

about short-term prospects of a firm.

[Insert Table 8 near here]

6.2 Analyst forecast errors

Antoniou, Doukas, and Subrahmanyam (2016) propose using analyst forecast errors (FE)

as a relatively direct measure of sentiment and noise trading activity. Ex post, forecast

errors also provide a more direct proxy for analyst underreaction - that is if firms actual

results meet prior expectations. For underreaction to explain our results, we should

observe that analysts produce more optimistic (pessimistic) forecasts for stocks with poor

(strong) past performance and low (high) pth after low-volatility months. In other words,

when the momentum strategy is less volatile, analysts would underreact to public and /
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or private signals of past losers and winners, and investors would correct this bias in the

next quarterly earnings announcement. To examine this possibility, at the end of each

formation period, we sort all stocks into deciles by r2,12 or pth using NYSE breakpoints,

and then within each decile, we compute FE of upcoming quarterly earnings for the stocks

covered by analysts. This is defined as (mean estimatet−1 − actual)/abs(actual), using

the data from the IBES summary files. FE is winsorized at the 5th and 95th percentile

each month.

[Insert Table 9 near here]

Table 9 and Table 10 show that average analyst forecast errors are all either positive

or insignificant, both for momentum and pth portfolios. So, analyst forecasts have a

systematic optimistic bias. This does not necessarily reflect a biased perception for the

part of analysts. Hong and Kubik (2003) document that, due to career concerns, analysts,

especially sell-side analysts, are more likely to produce optimistic forecasts. But regardless

of the origin of the bias in forecasts, it is striking that excessive optimism is much more

prevalent for losers than winners (same for low-pth versus high-pth). There is little to

no bias in winners / high-pth stocks, the bias is all in the losers. So, only winners /

high-pth stocks are able to meet the high expectations of analysts on average, all others

disappoint. For momentum (pth) VW portfolios, the t-statistic for the difference in FE

between deciles is -13.36 (-13.16). Therefore underreaction seems stronger in the short

legs of the strategies.

[Insert Table 10 near here]

Closer to the main point of the exercise, we find that the difference in FE across

deciles is more than double after low-RV months when compared to other months, both

for momentum and pth. All of these differences between volatility states are statistically

significant with t-stats between -5.67 (for VM momentum portfolios) and -7.46 (for EW

pth portfolios).

Table 11 reports the factor-adjusted returns of the long and short legs of PTH and

WML separately. Consistent with the pattern of analyst forecast errors, the short and

long legs of the two strategies work only in the safe months, and the short legs contribute

more to their overall profits. Strikingly, the raw returns earned by the short leg of PTH

are 8 times higher than the ones earned by the long leg following safe months, and the

profits produced by the short leg of WML are twice as high as its counter-party. Besides,

all factor models including both conventional and newly proposed models fail to capture

the short legs of the two strategies, and the short legs exhibit a similar time variations

in profits as the long-short portfolios.
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[Insert Table 11 near here]

Based on these results, we can conclude that the predictability and profitability of the

two strategies comes mostly from the short legs, and the time-varying performance and

profitability of their short legs can be attributable to analysts’ time-varying optimism

- especially excessive optimism relative to past losers and stocks far away from their

52-week high which both tend to disappoint.

7 Does 52-week high momentum drive price momen-

tum or vice versa?

One of the important findings of George and Hwang (2004) is that nearness to the 52-week

high subsume the predictive power of past returns for expected returns using a sample

from 1963 to 2001. In this section, we re-examine the relation between the two variables

using a sample covering 1927 through 2019.

7.0.1 Spanning tests

Table 12 presents the results of spanning tests between price momentum and 52-week

high momentum using a sample period from 1927 to 2019. In the first six specifica-

tions, we conduct spanning tests using factor portfolios. For the factor portfolio of price

momentum, we use the up-minus-down(UMD) factor obtained from Ken French’s data

library. The construction method of the 52-week high factor (PTHf) portfolio is analogue

to the method of UMD. Specifically, the factor portfolio is constructed from six monthly

rebalanced value-weighted portfolios which are the interactions of two portfolios formed

on size and three portfolios formed on the ratio of price in month t−2 to its 52-week high

price. We use the median NYSE market equity to put stocks into large- and small-cap

groups. We use the 30th and 70th NYSE percentiles18 of pth to divide stocks into three

portfolios. PTHf is the average return on the two high pth portfolios minus the average

return on the two low pth portfolios.

Specifications one and four show that the 52-week high and momentum factors earned

a significant 42 basis points per month, with a t-statistic of 2.6, and 65 basis points per

month, with a t-statistic of 4.59, respectively. Specifications (2) and (4) conduct the

factor spanning tests by running a simple time-series regression of one factor on the other.

Specification (2) shows that PTHf has a marginally significant negative alpha relative to

price momentum, while specification (4) shows that UMD earns a significant abnormal

return of 35bps/month relative to PTHf . This suggests that price momentum subsumes

PTHf . However, after controlling for Fama and French (1993) three factors, as shown

18We use only pth smaller than one to form the portfolio breakpoints.
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in specification (3), PTHf earns a highly significant factor-adjusted return of 0.26% per

month, with a t-statistic of 4.14, and UMD has an insignificant alpha in specification (6).

Moreover, after controlling for the 52-week high factor, the momentum factor positively

co-varies with the market and size factors. As a result, the evidence from the first six

specifications is mixed and inconclusive. In terms of raw returns, PTHf is fully captured

by price momentum, and in terms of factor-adjusted returns, PTHf instead completely

subsumes price momentum.

In our view, a possible drawback of factor spanning tests often used in the literature is

that micro- and small-cap stocks are effectively overweighted in the calculation of factor

returns when these are built with double sorts on size and some characteristic. This

applies to UMD and PTHf that use 30th and 70th NYSE percentiles as breakpoints

and, therefore, put as much weight on the bottom 30% of stocks as the top 30%. For

that reason, in the following six specifications, we replace the two factor portfolios with

two straightforward high-minus-low decile portfolios. Specifications seven and ten show

that without the double sorting on market capitalisation, the performance of the 52-week

high strategy is weaker and the performance of price momentum improves. The results

from the remaining specifications exhibit a consistent pattern that the high-minus-low 52-

week high decile is fully subsumed by the winner-minus-loser decile. We hence conclude

that, unconditionally, except for small caps, price momentum is a stronger anomaly than

52-week high.

[Insert Table 12 near here]

7.0.2 Fama-Macbeth regressions

To further investigate the relation between the two anomalies, Panel A of Table 13 re-

ports results of Fama and MacBeth (1973) predictive regressions, with weighted least

squares, of individual monthly returns in monthly t onto the past performance (r2,12)

and the ratio of price in month t − 2 (pth) to its 52-week high. To mitigate the im-

pacts of small- and micro-cap stocks, We use stocks’ market equity in month t − 1 as

weights. We include the log of market equity (Ln(ME)), the log of book-to-market ratio

(Ln(B/M)), and prior month’s return (r0,1) as controls to account for the size, value and

short-term reversal effects. Independent variables are winsorised at the 1 and 99% levels.

The sample covers July 1927 through December 2019. The first two specifications show

the coefficient estimates on past performance and nearness to the 52-week high from uni-

variate regressions, respectively. Unsurprisingly, specification one suggests a significant

positive cross-sectional correlation between past performance and expected returns, and

specification two also shows a significant positive correlation between pth and expected

returns. Specification three includes both past performance and nearness to the 52-week
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high. It shows that the pth is subsumed by past performance in predicting future returns,

and the predictive power of past performance for returns is enhanced after controlling for

nearness to the 52-week high. The results are robust to the specification where we control

for the size, value and short-term reversal effects. This suggests that the unconditional

forecasting power of nearness to the 52-week high for cross-section of expected returns

comes from its correlation with past performance.

In Panel B of Table 13, we examine whether the conclusion holds conditionally. Again,

we split the sample into three volatility states using the lagged realized volatility of WML.

Specifications one, two, five and six show significant time variation in correlations between

the two anomalies and expected returns. Surprisingly, specification three shows that af-

ter controlling for pth, the price momentum strategy actually becomes profitable even

following risky months. Recently, Byun and Jeon (2018) propose a 52-week-high-neutral

momentum strategy and show that it is free of crashes and significantly outperforms the

conventional strategy. Our results for risky months confirm that. On the other hand,

specification seven, following safe months, show that pth has a marginally independent

predictive power for cross-sectional variation in returns after controlling for past perfor-

mance though the predictive power of pth disappears when controlling for the size, value

and short-term reversal effects. So conditionally, price momentum does not completely

subsume pth. Hence, although both unconditional spanning tests and Fama and Mac-

Beth (1973) regressions suggest that price momentum drives the 52-week high anomaly,

52-week high tends to be an independent anomaly after safe months during which it

works.

8 Market states and payoffs of WML and PTH

Following Cooper, Gutierrez, and Hameed (2004), we identify the state of the stock

market for month t using the cumulative past one-year return on the CRSP value-weighted

index (dividends included). If the return is non-negative (negative), the holding month

is defined as “UP” (“DOWN”). This is an ex-ante indicator. Cooper, Gutierrez, and

Hameed (2004) offer three definitions of market states and primarily present their results

using prior three-year market returns. Daniel and Moskowitz (2016) use the two-year

definition of the market state. The trade-off in the selection of a horizon is between

the strength and the frequency of changes in the state of the market. Our results are

generally robust to different definitions of market states. Table 14 shows the mean excess

returns (raw, CAPM-adjusted, FF3-adjusted, Carhart4-adjusted, FF5-adjusted) of two

high-minus-low deciles formed in “UP” and “DOWN” markets, and changes in alphas

across “UP” and “DOWN” states.

During 1927:01 to 2019:12, the price momentum and the 52-week high strategies

are significantly profitable following “UP” markets yielding 158 and 79 basis points per
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month, respectively. Moreover, both strategies have statistically positive CAPM- and

FF3- alphas in up markets, and PTH earns a significant Carhart4-alpha following “UP”

states. However, there is no premium of the 52-week high and price momentum strategies

following “DOWN” markets in which either raw returns or factor-adjusted returns are

statistically insignificant. This shows that, similar to price momentum, the profitability

of 52-week high momentum is conditional on the state of the market.

[Insert Table 14 near here]

Next, we examine whether the newly proposed factor models can capture the condition-

ality of both strategies. Panel A of Table 15 shows that, in “DOWN” markets, only

FF6 can capture PTH, and PTH loads heavily on the momentum factor. Other models

dominate PTH in the sense that the anomaly earns significant negative alphas. These

negative alphas are economically large, ranging between -1.40% and -2.24% per month.

[Insert Table 15 near here]

In “UP” markets, PTH instead yields significant positive HXZ4- and HXZ4a-alphas as

well as marginally significant positive FF6-alpha. This suggests that PTH’s uncondi-

tional insignificant HXZ4-alpha is misleading. It is essentially an average between two

significant effects of opposite signs occurring in two different predictable subsample. The

best performing model in “UP” market is BF3 with the smallest insignificant alpha in ab-

solute term (0.05). NM5 successfully captures PTH as well and has the highest adjusted

R-squared (0.44).

The pattern for WML is similar. Panel A of Table 16 shows that, in “DOWN”

markets, WML earns either insignificant or negative alphas. In “UP” markets, price

momentum loads heavily on earnings-surprise factors, and NM5 is the best performing

model in explaining momentum. Panel B confirms the increases of alphas for all models

after “UP” markets.

[Insert Table 16 near here]

A striking pattern in panel A of both tables Table 15 and Table 16 is that the R-squared

of all spanning regressions increases with “DOWN” markets. This confirms that the

linear association of the anomalies with the factors explaining them comes mostly from

this subsample which is not when their puzzling average returns are produced.
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8.0.1 Option-like behavior of the WML and PTH portfolios

Daniel and Moskowitz (2016) document the option-like behavior of WML. They find

that in “DOWN” markets, the momentum portfolio is effectively a short-call option on

the market, and the optionality effect is driven by past losers. This is likely the best

explanation for the strong predictability of WML returns. As we find that pth has

similar predictability, it is natural to ask if the same optionality permeates this anomaly.

Following their setting, we examine the existence of the optionality effect for the 52-week

high strategy using three specifications of monthly time-series regressions whose results

are shown in Table 17.

[Insert Table 17 near here]

In specification (1), we estimate an unconditional market model (CAPM):

R
PTH,t

= α + βmR
e
m,t + εt, (13)

where R
PTH,t

is the return to the high-minus-low decile on pth in month t, and Re
m,t is

the excess return on the CRSP value-weighted index in month t. Similar to WML, PTH

yields a positive significant CAPM-alpha of 1.08% per month with a t-statistic of 5.61.

In specification (2), we estimate an conditional market model which allows for the change

in the alpha and the market beta with the state of the market in the form of

R
PTH,t

= α + αBIB,t−1 + (βm + βBIB,t−1)Re
m,t + εt (14)

where IB,t−1 is an ex-ante DOWN-market indicator. Consistent with the findings of

Grundy and Martin (2001) and Daniel and Moskowitz (2016) on momentum, PTH shows

more negative exposure to the market risk in “DOWN” markets, and the risk-adjusted

return in down markets is -0.26% (α + αB) per month. Specifically, the CAPM-alpha

and market beta of PTH in “DOWN” markets shrink by 1.50 and 0.78 with t-statics of

-2.66 and -5.67 on differences, respectively. Following Henriksson and Merton (1981) and

Daniel and Moskowitz (2016), we add the contemporaneous UP-market indicator, IU,t, of

specification two into specification three, which is

R
PTH,t

= α + αBIB,t−1 + [βm + IB,t−1(βB + IU,tβB,U)]Re
m,t + εt (15)

The model is designed to test the existence of option-like behavior of PTH relative to the

market. The estimate of βB,U is significantly negative, suggesting that, holding a PTH

portfolio in “DOWN” markets is effectively a call option written on the market. Specif-

ically, in holding months with a negative contemporaneous market return, the market

beta of PTH is -0.8, while in holding months with a negative contemporaneous market
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return, the beta decreases to -1.77.19

9 Conclusion

Prior studies document that both investor underreaction and the investment CAPM can

explain the premiums of momentum and 52-week high momentum. It is puzzling that

the two polar explanations can account for the same effect. Following the suggestions of

Subrahmanyam (2018), we attempt to discern the real driver by examining what drives

the two effects when the two strategies yields substantial premiums. Our tests are based

on the fact that the two anomalies do not persistently generate profits. Instead their

profitability strongly depends on several state variables, especially the realized volatility

of momentum and market states. We expect that a true driver of the two effects should

be able to match this time-varying nature of the anomalies.

Our evidence is more supportive of the behavioral explanations for the two anomalies.

Specifically, fundamental-momentum model is the best performing model in capturing

price momentum both unconditionally and conditionally, which is consistent with the

finding of Novy-Marx (2015a) that price momentum is a weak expression of fundamental

momentum.

Earnings announcement returns confirm that winners (losers) have higher (lower) re-

turns after safe months, a pattern coherent with underreaction and subsequent correction

in expectations. Concurrently, analyst forecasts are excessively optimistic on average, es-

pecially with loser stocks and in times of low volatility. This is also consistent with

underreaction being more prevalent in low-volatility environments.

We further show that price momentum can subsume 52-week high momentum un-

conditionally. However, it does not mean that the 52-week high strategy is irrelevant.

Controlling for nearness to 52-week high can even make price momentum profitable when

the risk of momentum is high, and nearness to 52-week high has marginally indepen-

dent forecasting power for expected returns after controlling for price momentum in safe

months.

19We note that in this last specification α is no longer a risk-adjusted return as IU,tβB,UR
e
m,t is not

the excess return of an implementable portfolio.
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Table 1
Descriptive statistics
This table reports the performance of the high-minus-low deciles on the past performance (WML) and the ratio

of current price to 52-week high price (PTH) compared with the market factor (RMRF). The holding period
of the three zero-cost portfolios is one month. Specifically, the table reports the maximum and minimum one-
month returns observed in the long and short samples, the (annualized) mean excess return, the (annualized)
standard deviation of each portfolio, excess kurtosis, skewness, and (annualized) Sharpe ratio. The sample
period in Panel A runs from January 1927 to December 2019, while the sample period in Panel B runs from
July 1972 to December 2019, the sample period used in our main tests.

Portfolio Maximum Minimum Mean Standard Skewness Kurtosis Sharpe
deviation ratio

Panel A: Jan 1927 - Dec 2019
WML 26.26 -76.81 13.84 27.01 -2.49 19.49 0.51
PTH 29.56 -78.58 5.30 29.84 -2.78 19.68 0.18
RMRF 38.85 -29.13 7.96 18.47 0.18 7.84 0.43

Panel B: July 1972 - Dec 2019
WML 26.18 -61.89 12.97 24.89 -1.69 12.56 0.52
PTH 27.24 -63.49 8.05 25.59 -1.84 12.78 0.31
RMRF 16.10 -23.24 6.84 15.57 -0.57 2.08 0.44

.
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Table 2
Alphas and Volatility States.

This table presents the raw or factor-adjusted returns of the high-minus-low deciles on the price momentum
(WML) and the ratio of current price to 52-week high (PTH) across three volatility states. At the end of each
month t− 1, all common stocks traded on NYSE, AMEX and NASDAQ are sorted into deciles based on their
prior 11-month returns from t−12 to t−2 (the ratio of current price to 52-week high price of t−2) using NYSE
breakpoints. We skip month t − 1 and calculate monthly value-weighted returns for each decile for month t.
The deciles are held for one month and rebalanced at the end of month t. We employ the realized volatility of
WML, calculated from daily returns in the previous 6 months (126 trading days), to define the volatility state
for month t. The top (bottom) 30% observations of the realized volatility series are the High-RV (Low-RV)
periods, and the remaining periods are the Medium-RV periods. “CAPM” denotes the market model proposed
by (Sharpe, 1964; Lintner, 1965; Black, 1972). “FF3” denotes the Fama and French (1993) three-factor model.
“Carhart4” denotes the Carhart (1997) 4-factor model consisting of the FF3 factors plus the Momentum factor.
“FF5” denotes the Fama and French (2015) five-factor model. The sample period in Panel A runs from July
1927 to December 2019, while the sample period in Panel B runs from July 1972 to December 2019, the sample
period used in our main tests. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

WML RV Unconditional

High Medium Low Low-High Full

Panel A: Jan 1927 - Dec 2019
rWML 0.35

(0.53)
1.01∗∗∗

(3.90)
2.10∗∗∗

(9.72)
1.75∗∗∗

(2.51)
1.14∗∗∗

(4.86)

rPTH −0.58
(−0.78)

0.37
(1.36)

1.49∗∗∗
(7.34)

2.08∗∗∗
(2.66)

0.42
(1.63)

αCAPM
WML

0.89∗
(1.67)

1.02∗∗∗
(3.99)

2.09∗∗∗
(9.60)

1.20∗∗
(2.09)

1.48∗∗∗
(7.27)

αCAPM
PTH

0.18
(0.34)

0.84∗∗∗
(3.55)

1.71∗∗∗
(9.28)

1.53∗∗∗
(2.76)

1.05∗∗∗
(5.47)

αFF3
WML

0.99∗∗
(2.02)

1.04∗∗∗
(3.94)

2.16∗∗∗
(10.38)

1.17∗∗
(2.20)

1.68∗∗∗
(8.38)

αFF3
PTH

0.61
(1.34)

0.78∗∗∗
(3.75)

1.70∗∗∗
(10.27)

1.09∗∗
(2.25)

1.27∗∗∗
(7.35)

αCarhart4
PTH

0.01
(0.03)

0.26
(1.59)

0.66∗∗∗
(5.10)

0.65∗∗
(2.01)

0.22∗
(1.76)

Panel B: July 1972 - Dec 2019
rWML 0.19

(0.24)
0.59
(1.53)

2.62∗∗∗
(8.52)

2.43∗∗∗
(2.86)

1.08∗∗∗
(3.59)

rPTH −0.15
(−0.19)

0.37
(0.94)

1.90∗∗∗
(6.22)

2.05∗∗∗
(2.33)

0.67∗∗
(2.17)

αCAPM
WML

0.70
(1.01)

0.62
(1.61)

2.60∗∗∗
(8.44)

1.90∗∗∗
(2.49)

1.23∗∗∗
(4.29)

αCAPM
PTH

0.74
(1.15)

0.73∗∗
(2.12)

2.03∗∗∗
(7.50)

1.29∗
(1.84)

1.11∗∗∗
(4.23)

αFF3
WML

0.73
(1.12)

0.80∗
(1.93)

2.69∗∗∗
(9.09)

1.96∗∗∗
(2.72)

1.46∗∗∗
(5.00)

αFF3
PTH

1.12∗
(1.84)

0.67∗∗
(2.11)

1.79∗∗∗
(7.21)

0.67
(1.02)

1.23∗∗∗
(4.87)

αCarhart4
PTH

0.41
(1.21)

0.22
(0.97)

0.55∗∗∗
(2.62)

0.14
(0.34)

0.20
(1.24)

αFF5
WML

0.14
(0.18)

0.87∗∗
(1.96)

2.54∗∗∗
(7.26)

2.40∗∗∗
(2.80)

1.25∗∗∗
(3.67)

αFF5
PTH

0.38
(0.53)

0.57∗
(1.72)

1.61∗∗∗
(6.12)

1.23
(1.62)

0.90∗∗∗
(3.07)
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Table 3
Unconditional time-series regressions of WML and PTH

This table reports the alphas and factor loadings from time-series regressions of the winner-minus-loser decile
(WML) and the high-minus-low 52-week high decile (PTH) on the well-documented sets of asset-pricing factors.
“BF3” denotes the Daniel, Hirshleifer, and Sun (2020) 3-factor model. “HXZ4” denotes the Hou, Xue, and
Zhang (2015) q-factor model. “HXZ4a” denotes the alternative q-factor model suggested by Novy-Marx (2015b)
where the ROE factor is decomposed into the lag-ROE and ∆ROE factors. “HXZ5” denotes the Hou et al.
(2020) augmented q-factor model. “FF6” adds the momentum factor (UMD) into the Fama-French 5-factor
model (Fama and French, 2018). “NM5” denotes the fundamental momentum factor model suggested by Novy-
Marx (2015a) consisting of FF3 and the earnings-surprise factors (CAR4 and SUE). The factors are the market
(MKT), post-earnings announcement drift (PEAD), financing (FIN), size (ME or SMB), investment (IA),
return on equity (ROE), lagged earnings-to-book equity (lagged-ROE), earnings innovations-to-book equity
(∆ROE), value (HML), conservative-minus-aggressive (CMA), robust-minus-weak (RMW), momentum (UMD),
and earnings surprise (SUE and CAR4). Heteroskedasticity-adjusted t-statistics are shown in parentheses.

PTH WML

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5

α −0.66∗∗
(−2.04)

0.18
(0.62)

0.12
(0.41)

−0.23
(−0.79)

0.07
(0.43)

−0.39
(−1.28)

−0.14
(−0.36)

0.35
(1.02)

0.08
(0.25)

−0.17
(−0.49)

−0.40
(−1.20)

βMKT −0.40∗∗∗
(−5.62)

−0.52∗∗∗
(−7.27)

−0.68∗∗∗
(−8.14)

−0.45∗∗∗
(−5.95)

−0.37∗∗∗
(−9.60)

−0.57∗∗∗
(−9.59)

−0.10
(−1.21)

−0.17∗∗
(−2.13)

−0.42∗∗∗
(−5.23)

−0.09
(−1.05)

−0.25∗∗∗
(−3.79)

βPEAD 1.69∗∗∗
(6.55)

1.85∗∗∗
(6.50)

βFIN 0.70∗∗∗
(7.48)

0.18
(1.47)

βME −0.35∗∗∗
(−2.38)

−0.55∗∗∗
(−4.30)

−0.30∗∗
(−2.04)

0.34∗∗
(2.08)

0.04
(0.30)

0.41∗∗∗
(2.45)

βIA 0.29
(1.26)

0.29
(1.33)

0.18
(0.83)

−0.12
(−0.45)

−0.10
(−0.43)

−0.26
(−1.00)

βROE 1.41∗∗∗
(7.20)

1.21∗∗∗
(5.30)

1.47∗∗∗
(6.61)

1.22∗∗∗
(4.66)

βlag−ROE 0.20
(0.88)

−0.35∗
(−1.68)

β∆ROE 1.47∗∗∗
(6.34)

2.05∗∗∗
(10.03)

βEG 0.61∗∗∗
(3.35)

0.78∗∗∗
(3.27)

βSMB −0.73∗∗∗
(−10.40)

−0.57∗∗∗
(−5.54)

0.23∗
(1.78)

βHML 0.24∗∗∗
(3.05)

0.20∗
(1.80)

0.01
(0.10)

βCMA 0.11
(0.98)

βRMW 0.34∗∗∗
(2.88)

βUMD 1.16∗∗∗
(15.50)

βSUE 1.29∗∗∗
(5.62)

1.74∗∗∗
(7.04)

βCAR4 1.31∗∗∗
(5.05)

1.16∗∗∗
(3.87)

R2
adj 0.47 0.50 0.51 0.52 0.78 0.57 0.25 0.26 0.41 0.28 0.41
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Table 4
Panel A: Pricing of PTH and Volatility States

This panel presents the alphas and factor loadings from time-series regressions of the high-minus-low 52-week high decile (PTH) on the well-documented sets of
asset-pricing factors in each volatility state. We employ the realized volatility of WML, calculated from daily returns in the previous 6 months (126 trading days),
to define the volatility state for month t. The top (bottom) 30% observations of the realized volatility series are the High-RV (Low-RV) periods, and the remaining
periods are the Medium-RV periods. “BF3” denotes the Daniel, Hirshleifer, and Sun (2020) 3-factor model. “HXZ4” denotes the Hou, Xue, and Zhang (2015)
q-factor model. “HXZa” denotes the alternative q-factor model suggested by Novy-Marx (2015b) where the ROE factor is decomposed into the lag-ROE and ∆ROE
factors. “HXZ5” denotes the Hou et al. (2020) augmented q-factor model. “FF6” adds the momentum factor (UMD) into the Fama-French 5-factor model (Fama
and French, 2018). “NM5” denotes the fundamental momentum factor model suggested by Novy-Marx (2015a) consisting of FF3 and the earnings-surprise factors
(CAR4 and SUE). The factors are the market (MKT), post-earnings announcement drift (PEAD), financing (FIN), size (ME or SMB), investment (IA), return
on equity (ROE), lagged earnings-to-book equity (lagged-ROE), earnings innovations-to-book equity (∆ROE), value (HML), conservative-minus-aggressive (CMA),
robust-minus-weak (RMW), momentum (UMD), and earnings surprise (SUE and CAR4). The sample is 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics
are shown in parentheses.

High RV Medium RV Low RV

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5

α −1.08∗
(−1.67)

−0.34
(−0.57)

−0.30
(−0.46)

−0.56
(−0.94)

0.29
(0.80)

−0.45
(−0.74)

−0.75∗∗
(−2.04)

0.04
(0.12)

0.04
(0.13)

−0.44
(−1.26)

0.09
(0.41)

−0.51∗
(−1.68)

0.99∗∗∗
(3.20)

1.09∗∗∗
(4.07)

0.89∗∗∗
(3.22)

0.72∗∗∗
(2.34)

0.48∗∗
(2.32)

0.56∗∗
(2.00)

βMKT −0.65∗∗∗
(−4.94)

−0.58∗∗∗
(−4.38)

−0.88∗∗∗
(−6.50)

−0.54∗∗∗
(−3.85)

−0.37∗∗∗
(−4.95)

−0.81∗∗∗
(−7.18)

−0.19∗
(−1.66)

−0.34∗∗∗
(−4.25)

−0.46∗∗∗
(−5.86)

−0.25∗∗∗
(−2.96)

−0.33∗∗∗
(−5.61)

−0.37∗∗∗
(−5.73)

−0.32∗∗∗
(−3.79)

−0.31∗∗∗
(−3.48)

−0.35∗∗∗
(−4.31)

−0.28∗∗∗
(−3.17)

−0.35∗∗∗
(−6.81)

−0.33∗∗∗
(−3.81)

βPEAD 2.23∗∗∗
(5.56)

1.23∗∗∗
(5.07)

0.69∗∗∗
(2.98)

βFIN 0.73∗∗∗
(5.47)

0.74∗∗∗
(5.55)

0.45∗∗∗
(3.51)

βME 0.20
(0.88)

−0.11
(−0.55)

0.22
(0.97)

−0.83∗∗∗
(−7.49)

−0.92∗∗∗
(−8.81)

−0.75∗∗∗
(−6.47)

−0.57∗∗∗
(−4.30)

−0.68∗∗∗
(−5.02)

−0.55∗∗∗
(−4.22)

βIA −0.29
(−0.70)

−0.17
(−0.43)

−0.35
(−0.87)

0.57∗∗∗
(2.66)

0.51∗∗∗
(2.33)

0.51∗∗∗
(2.62)

0.52∗∗∗
(3.24)

0.61∗∗∗
(3.52)

0.39∗∗
(2.28)

βROE 1.94∗∗∗
(6.31)

1.82∗∗∗
(4.80)

0.94∗∗∗
(7.08)

0.75∗∗∗
(5.25)

0.70∗∗∗
(5.17)

0.58∗∗∗
(3.85)

βlag−ROE 0.26
(0.76)

0.27∗
(1.87)

0.20
(1.05)

β∆ROE 1.98∗∗∗
(5.24)

1.04∗∗∗
(7.66)

0.76∗∗∗
(5.71)

βEG 0.36
(1.03)

0.72∗∗∗
(3.37)

0.46∗∗
(2.28)

βSMB −0.73∗∗∗
(−5.28)

−0.31∗
(−1.86)

−0.84∗∗∗
(−9.55)

−0.94∗∗∗
(−9.35)

−0.77∗∗∗
(−8.97)

−0.70∗∗∗
(−5.24)

βHML 0.47∗∗∗
(3.85)

0.14
(0.80)

0.28∗∗
(2.17)

0.33∗∗∗
(2.65)

−0.03
(−0.21)

0.32∗∗∗
(2.33)

βCMA 0.02
(0.09)

0.02
(0.08)

0.22∗
(1.87)

βRMW 0.20
(1.24)

0.37∗∗∗
(2.56)

0.15
(1.08)

βUMD 1.33∗∗∗
(12.77)

0.95∗∗∗
(14.79)

0.85∗∗∗
(12.78)

βSUE 1.60∗∗∗
(4.83)

1.07∗∗∗
(6.14)

0.91∗∗∗
(5.23)

βCAR4 1.69∗∗∗
(4.88)

0.79∗∗∗
(3.11)

0.39
(1.47)

R2
adj 0.57 0.59 0.56 0.59 0.82 0.62 0.41 0.51 0.54 0.54 0.72 0.60 0.32 0.45 0.48 0.46 0.69 0.50
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Table 4 (continued)
Panel B: Changes in alphas and factor loadings for PTH across volatility states
This panel presents the changes in alphas and factor loadings from the conditional time-series regressions of the high-minus-low 52-week high decile (PTH) on the
well-documented sets of asset-pricing factors. The sample is from 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

Low − High Medium − High Low − Medium

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5

α 2.07∗∗∗
(2.90)

1.43∗∗
(2.19)

1.19∗
(1.68)

1.28∗
(1.92)

0.19
(0.45)

1.01
(1.51)

0.32
(0.43)

0.38
(0.56)

0.34
(0.47)

0.12
(0.17)

−0.20
(−0.46)

−0.06
(−0.09)

1.75∗∗∗
(3.62)

1.05∗∗∗
(2.51)

0.85∗∗
(2.06)

1.17∗∗∗
(2.50)

0.39
(1.27)

1.08∗∗∗
(2.60)

βMKT 0.33∗∗
(2.11)

0.27∗
(1.69)

0.53∗∗∗
(3.38)

0.26
(1.55)

0.02
(0.25)

0.48∗∗∗
(3.39)

0.46∗∗∗
(2.68)

0.24
(1.54)

0.42∗∗∗
(2.70)

0.29∗
(1.78)

0.04
(0.39)

0.43∗∗∗
(3.34)

−0.13
(−0.95)

0.03
(0.26)

0.11
(0.98)

−0.03
(−0.27)

−0.01
(−0.19)

0.05
(0.42)

βPEAD −1.53∗∗∗
(−3.31)

−1.00∗∗
(−2.13)

−0.54
(−1.60)

βFIN −0.28
(−1.50)

0.01
(0.03)

−0.29
(−1.54)

βME −0.77∗∗∗
(−2.93)

−0.56∗∗
(−2.29)

−0.77∗∗∗
(−2.93)

−1.03∗∗∗
(−4.09)

−0.81∗∗∗
(−3.51)

−0.97∗∗∗
(−3.78)

0.26
(1.52)

0.25
(1.45)

0.19
(1.12)

βIA 0.81∗
(1.82)

0.78∗
(1.83)

0.74∗
(1.70)

0.85∗
(1.84)

0.68
(1.51)

0.85∗
(1.92)

−0.05
(−0.17)

0.11
(0.38)

−0.11
(−0.43)

βROE −1.24∗∗∗
(−3.70)

−1.24∗∗∗
(−3.03)

−1.00∗∗∗
(−2.98)

−1.07∗∗∗
(−2.64)

−0.25
(−1.29)

−0.17
(−0.80)

βlag−ROE −0.06
(−0.16)

0.01
(0.02)

−0.07
(−0.28)

β∆ROE −1.21∗∗∗
(−3.03)

−0.94∗∗∗
(−2.34)

−0.28
(−1.45)

βEG 0.11
(0.27)

0.36
(0.89)

−0.25
(−0.86)

βSMB −0.04
(−0.27)

−0.38∗
(−1.79)

−0.11
(−0.69)

−0.63∗∗∗
(−3.21)

0.07
(0.56)

0.24
(1.47)

βHML −0.49∗∗∗
(−2.81)

0.18
(0.83)

−0.18
(−1.01)

0.19
(0.90)

−0.31∗
(−1.71)

−0.01
(−0.04)

βCMA 0.21
(0.97)

0.00
(0.00)

0.20
(0.82)

βRMW −0.06
(−0.27)

0.16
(0.75)

−0.22
(−1.13)

βUMD −0.48∗∗∗
(−3.89)

−0.38∗∗∗
(−3.08)

−0.10
(−1.12)

βSUE −0.69∗
(−1.85)

−0.53
(−1.41)

−0.17
(−0.67)

βCAR4 −1.30∗∗∗
(−2.98)

−0.90∗∗
(−2.10)

−0.40
(−1.08)

34



Table 5
Panel A: Pricing of WML and Volatility States

This panel presents the alphas and factor loadings from time-series regressions of the high-minus-low price momentum decile (WML) on the well-documented sets of
asset-pricing factors in three volatility states. We employ the realized volatility of WML, calculated from daily returns in the previous 6 months (126 trading days),
to define the volatility state for month t. The top (bottom) 30% observations of the realized volatility series are the High-RV (Low-RV) periods, and the remaining
periods are the Medium-RV periods. “BF3” denotes the Daniel, Hirshleifer, and Sun (2020) 3-factor model. “HXZ4” denotes the Hou, Xue, and Zhang (2015)
q-factor model. “HXZ4a” denotes the alternative q-factor model suggested by Novy-Marx (2015b) where the ROE factor is decomposed into the lag-ROE and ∆ROE
factors. ”HXZ5” denotes the Hou et al. (2020) augmented q-factor model. “NM5” denotes the fundamental momentum factor model suggested by Novy-Marx (2015a)
consisting of FF3 and the earnings-surprise factors (CAR4 and SUE). The factors are the market (MKT), post-earnings announcement drift (PEAD), financing
(FIN), size (ME or SMB), investment (IA), return on equity (ROE), lagged earnings-to-book equity (lagged-ROE), earnings innovations-to-book equity (∆ROE),
value (HML) and earnings surprise (SUE and CAR4). The sample is 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

High RV Medium RV Low RV

BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5

α −0.48
(−0.63)

−0.57
(−0.83)

−0.47
(−0.72)

−0.80
(−1.15)

−0.99
(−1.57)

−0.50
(−1.13)

−0.20
(−0.45)

−0.35
(−0.93)

−0.86∗
(−1.89)

−0.62
(−1.52)

1.56∗∗∗
(3.73)

1.92∗∗∗
(5.27)

1.42∗∗∗
(4.28)

1.28∗∗∗
(3.45)

0.81∗∗
(2.31)

βMKT −0.50∗∗∗
(−3.20)

−0.24∗
(−1.66)

−0.63∗∗∗
(−5.07)

−0.20
(−1.29)

−0.44∗∗∗
(−3.71)

0.14
(1.10)

0.07
(0.65)

−0.14
(−1.36)

0.20
(1.58)

−0.06
(−0.58)

0.11
(1.19)

−0.05
(−0.56)

−0.16∗
(−1.74)

−0.01
(−0.08)

−0.05
(−0.62)

βPEAD 2.31∗∗∗
(5.47)

1.30∗∗∗
(4.23)

0.98∗∗∗
(3.30)

βFIN 0.08
(0.44)

0.25
(1.48)

0.27∗∗
(1.96)

βME 0.91∗∗∗
(3.86)

0.45∗∗∗
(2.33)

0.93∗∗∗
(3.87)

−0.16
(−0.93)

−0.34∗∗
(−2.18)

−0.04
(−0.24)

0.32∗
(1.70)

0.14
(0.74)

0.35∗
(1.91)

βIA −0.96∗∗
(−2.03)

−0.61
(−1.51)

−1.02∗∗
(−2.26)

0.49∗
(1.65)

0.26
(0.89)

0.40
(1.51)

0.30
(1.44)

0.37∗
(1.82)

0.08
(0.36)

βROE 1.99∗∗∗
(5.69)

1.86∗∗∗
(4.39)

1.20∗∗∗
(6.34)

0.93∗∗∗
(4.43)

0.81∗∗∗
(4.22)

0.61∗∗∗
(2.85)

βlag−ROE −0.34
(−1.07)

−0.14
(−0.77)

−0.08
(−0.35)

β∆ROE 2.51∗∗∗
(7.90)

1.71∗∗∗
(9.66)

1.24∗∗∗
(7.05)

βEG 0.37
(0.88)

0.98∗∗∗
(3.05)

0.80∗∗∗
(3.06)

βSMB 0.54∗∗∗
(2.74)

−0.22
(−1.47)

0.20
(1.19)

βHML −0.19
(−0.92)

0.21
(1.12)

0.46∗∗∗
(3.13)

βSUE 2.08∗∗∗
(5.95)

1.72∗∗∗
(7.38)

1.39∗∗∗
(6.08)

βCAR4 1.39∗∗∗
(3.61)

0.43
(1.24)

0.60∗
(1.66)

R2
adj 0.57 0.59 0.56 0.59 0.62 0.41 0.51 0.54 0.54 0.60 0.32 0.45 0.48 0.46 0.50
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Table 5 (continued)
Panel B: Changes in alphas and factor loadings for WML across volatility states
This table presents the changes in alphas and factor loadings from the conditional time-series regressions of the high-minus-low price momentum decile (WML) on
the well-documented sets of asset-pricing factors. The sample is from 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

Low − High Medium − High Low − Medium

BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5

α 2.04∗∗∗
(2.34)

2.49∗∗∗
(3.19)

1.89∗∗∗
(2.58)

2.08∗∗∗
(2.64)

1.80∗∗∗
(2.49)

−0.02
(−0.02)

0.37
(0.45)

0.12
(0.16)

−0.06
(−0.07)

0.37
(0.49)

2.06∗∗∗
(3.37)

2.12∗∗∗
(3.68)

1.77∗∗∗
(3.53)

2.14∗∗∗
(3.65)

1.43∗∗∗
(2.65)

βMKT 0.61∗∗∗
(3.36)

0.19
(1.06)

0.48∗∗∗
(3.07)

0.19
(1.07)

0.39∗∗∗
(2.69)

0.64∗∗∗
(3.17)

0.31∗
(1.71)

0.49∗∗∗
(3.02)

0.40∗∗
(2.00)

0.38∗∗∗
(2.43)

−0.03
(−0.21)

−0.13
(−0.86)

−0.02
(−0.12)

−0.21
(−1.32)

0.01
(0.06)

βPEAD −1.33∗∗∗
(−2.59)

−1.01∗
(−1.94)

−0.32
(−0.76)

βFIN 0.19
(0.83)

0.17
(0.69)

0.02
(0.08)

βME −0.59∗∗
(−1.97)

−0.30
(−1.13)

−0.58∗
(−1.93)

−1.07∗∗∗
(−3.68)

−0.79∗∗∗
(−3.19)

−0.97∗∗∗
(−3.35)

0.47∗
(1.88)

0.48∗
(1.95)

0.39
(1.59)

βIA 1.26∗∗∗
(2.44)

0.98∗∗
(2.16)

1.11∗∗
(2.18)

1.45∗∗∗
(2.60)

0.87∗
(1.74)

1.43∗∗∗
(2.71)

−0.18
(−0.51)

0.11
(0.30)

−0.32
(−0.90)

βROE −1.18∗∗∗
(−2.96)

−1.25∗∗∗
(−2.63)

−0.79∗∗
(−1.99)

−0.93∗∗
(−1.96)

−0.39
(−1.44)

−0.32
(−1.07)

βlag−ROE 0.26
(0.65)

0.20
(0.53)

0.06
(0.21)

β∆ROE −1.27∗∗∗
(−3.49)

−0.80∗∗
(−2.20)

−0.47∗
(−1.87)

βEG 0.43
(0.88)

0.61
(1.16)

−0.17
(−0.42)

βSMB −0.34
(−1.30)

−0.76∗∗∗
(−3.07)

0.43∗
(1.87)

βHML 0.65∗∗∗
(2.58)

0.40
(1.44)

0.25
(1.04)

βSUE −0.68
(−1.64)

−0.36
(−0.85)

−0.33
(−1.00)

βCAR4 −0.79
(−1.51)

−0.96∗
(−1.86)

0.17
(0.34)
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Table 6
Unconditional Fama-MacBeth regressions (WLS) of FRET, FIG and FROE on r2,12 and pth

The table reports results of Fama and MacBeth (1973) predictive regressions of future stock returns (FRET), profitability (FROE) and investment growth (FIG) in
month t, onto formation returns of momentum stategies (r2,12) or the ratio of stock price in month t−2 to its 52-week high (pth). The control variables include stocks’
prior month returns (r0,1), the log of firms’ book-to-market ratio (ln(B/M)), firms’ current investment growth (IA measured as total assets divided by one-year-prior
total assets minus one), current profitability (ROE measured as quarterly income before extraordinary items divided by one-quarter-prior book equity), and the log

of firm’s market capitalization (ln(ME)). FROE is the ratio of income before extraordinary items over one-year-lagged book equity, and FIG = log

(
1+

Ii,t+1
Ki,t+1

1+
Ii,t
Ki,t

)
where

Ii,t (Ii,t+1) is capital expenditures (Compustat item CAPX) minus sales of property, plant, and equipment (Compustat item SPPE, set to zero if missing) over the
course of fiscal year t (t + 1) for firm i, and Ki,t (Ki,t+1) is net property, plant and equipment (Compustat item PPENT) at the beginning of fiscal year t (t + 1).
We follow the methodology of Liu and Zhang (2014) and George, Hwang, and Li (2018) to align the annual measures: FROE and FIG with the monthly measure:
stock return (FRET) in time. Specifically, we match the two annual measures of fiscal year ending in month t with the monthly stock returns from t − 17 to t − 6.
The cross-sectional regressions are estimated by weighted least squares with firms’ market capitalization at the end of month t− 1 as weights. We exclude financial
firms. Independent variables with an annual frequency of firms with fiscal year ending in year t − 1 are assumed to be publicly available at the end of June of year
t. The quarterly earnings data are assumed to be publicly available at the end of the month during which they are announced. Except for FRET, all variables are
winsorized at the 1-99% level. The sample period runs from July 1972 to December 2019, which are the same as the sample period used in time-series regressions.
Heteroskedasticity-and-autocorrelation-adjusted t-statistics (Newey and West, 1987) are shown in parentheses where the number of lags is automatically selected
following the procedure specified in Newey and West (1994).

FRET FIG FROE

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

r2,12 0.74∗∗∗
(3.19)

0.62∗∗∗
(2.63)

0.05∗∗∗
(12.58)

0.05∗∗∗
(16.54)

0.10∗∗∗
(8.63)

0.06∗∗∗
(9.11)

pth 1.60∗∗∗
(3.04)

1.37∗∗∗
(2.60)

0.17∗∗∗
(13.96)

0.14∗∗∗
(15.93)

0.51∗∗∗
(13.84)

0.25∗∗∗
(13.35)

r0,1 −2.56∗∗∗
(−4.97)

−2.34∗∗∗
(−4.24)

ln(B/M) 0.12
(1.61)

0.09
(1.04)

ln(ME) −0.02
(−0.46)

−0.04
(−1.15)

IA −0.07∗∗∗
(−8.42)

−0.06∗∗∗
(−7.56)

−0.02∗∗∗
(−3.06)

−0.01∗
(−1.72)

ROE 0.09∗∗∗
(4.63)

0.08∗∗∗
(3.83)

2.35∗∗∗
(46.46)

2.31∗∗∗
(46.39)
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Table 7
Fama-MacBeth regressions (WLS) conditional on risk of momentum

The table reports the difference of coefficient estimates between Low-RV and High-RV subsamples from
conditional Fama and MacBeth (1973) predictive regressions of future stock returns (FRET), profitability
(FROE) and investment growth (FIG) in month t, onto formation returns of momentum strategies (r2,12) or
the ratio of stock price in month t − 2 to its 52-week high (pth). We employ the realized volatility of WML,
calculated from daily returns in the previous 6 months (126 trading days), to define the volatility state for month
t. The top (bottom) 30% observations of the realized volatility series are the High-RV (Low-RV) periods, and the
remaining periods are the Medium-RV periods. The control variables include stocks’ prior month returns (r0,1),
the log of firms’ book-to-market ratio (ln(B/M)), firms’ current investment growth (IA measured as total assets
divided by one-year-prior total assets minus one), and firms’ current profitability (ROE measured as quarterly
income before extraordinary items divided by one-quarter-prior book equity). FROE is the ratio of income

before extraordinary items over one-year-lagged book equity, and FIG = log

(
1+

Ii,t+1
Ki,t+1

1+
Ii,t
Ki,t

)
where Ii,t (Ii,t+1)

is capital expenditures (Compustat item CAPX) minus sales of property, plant, and equipment (Compustat
item SPPE, set to zero if missing) over the course of fiscal year t (t + 1) for firm i, and Ki,t (Ki,t+1) is net
property, plant and equipment (Compustat item PPENT) at the beginning of fiscal year t (t + 1). We follow
the methodology of Liu and Zhang (2014) and George, Hwang, and Li (2018) to align the annual measures:
FROE and FIG with the monthly measure: stock return (FRET) in time. Specifically, we match the two annual
measures of fiscal year ending in month t with the monthly stock returns from t−17 to t−6. The cross-sectional
regressions are estimated by weighted least squares with firms’ market capitalization at the end of month t− 1
as weights. We exclude financial firms. Independent variables with an annual frequency of firms with fiscal
year ending in year t − 1 are assumed to be publicly available at the end of June of year t. The quarterly
earnings data are assumed to be publicly available at the end of the month during which they are announced.
Except for FRET, all variables are winsorized at the 1-99% level. The sample period runs from July 1972 to
December 2019, which are the same as the sample period used in time-series regressions. Heteroskedasticity-
and-autocorrelation-adjusted t-statistics (Newey and West, 1987) is shown in parentheses where the number of
lags is automatically selected following the procedure specified in Newey and West (1994).

FRET FIG FROE

(1) (2) (3) (4) (5) (6)

Univariate Regressions
r2,12 1.75∗∗∗

(2.58)
−0.01
(−1.14)

0.00
(0.11)

pth 4.18∗∗∗
(2.96)

0.00
(0.08)

−0.14∗∗
(−2.06)

Multi-variate Regressions

r2,12 1.43∗∗
(2.07)

−0.01
(−1.45)

−0.00
(−0.03)

pth 3.12∗∗
(2.16)

−0.00
(−0.13)

−0.07
(−1.64)

r0,1 1.18
(0.90)

1.04
(0.72)

ln(B/M) 0.30
(1.49)

0.35
(1.55)

ln(ME) 0.37∗∗∗
(4.00)

0.29∗∗∗
(2.90)

IA −0.04∗∗∗
(−3.43)

−0.04∗∗∗
(−3.21)

0.03∗∗∗
(2.37)

0.04∗∗∗
(2.50)

ROE 0.01
(0.25)

0.02
(0.43)

−0.01
(−0.06)

0.02
(0.14)
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Table 8
Conditional univariate Fama-MacBeth regressions (WLS) of returns surrounding forthcoming quarterly earnings
announcements

This table reports the differences of coefficient estimates between Low-RV and High-RV subsamples from
univariate conditional Fama and MacBeth (1973) predictive regressions of returns surrounding forthcoming
quarterly earnings announcements, onto formation returns of momentum strategies (r2,12) or the ratio of stock
price in month t− 2 to its 52-week high (pth). We employ the realized volatility of WML, calculated from daily
returns in the previous 6 months (126 trading days), to define the volatility state for month t. The sample
period runs from July 1972 to December 2019, which are the same as the sample period used in time-series
regressions. Heteroskedasticity-and-autocorrelation-adjusted t-statistics (Newey and West, 1987) is shown in
parentheses where the number of lags is automatically selected following the procedure specified in Newey and
West (1994).

High Medium Low Low − High

FCR4 FCAR4 FCR4 FCAR4 FCR4 FCAR4 FCR4 FCAR4

pth 0.69
(1.53)

0.69
(1.43)

0.60∗∗
(2.25)

0.37
(1.44)

1.61∗∗∗
(4.83)

1.73∗∗∗
(5.75)

0.92
(1.56)

1.04∗
(1.77)

r2,12 0.05
(0.28)

0.06
(0.35)

0.37∗∗∗
(2.73)

0.29∗∗
(2.23)

0.67∗∗∗
(5.41)

0.64∗∗∗
(5.22)

0.63∗∗∗
(3.11)

0.57∗∗∗
(2.75)

sue 0.01
(0.30)

0.01
(0.24)

0.05∗∗
(2.17)

0.04∗∗
(1.98)

0.06∗∗∗
(3.85)

0.05∗∗∗
(3.41)

0.05
(1.36)

0.04
(1.31)

car4 −0.29
(−0.37)

−0.40
(−0.53)

0.11
(0.17)

−0.10
(−0.16)

2.26∗∗
(2.06)

1.91∗
(1.88)

2.56∗
(1.83)

2.32∗
(1.77)
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Table 9
PTH, Momentum Risk and Analyst Forecast Errors
The table reports average equal- and value-weighted analyst forecast error (FE) of the decile portfolios ranked

by pth, which is the ratio of monthly closing price to its 52-week high, (un)conditional on the risk of momentum.
At the end of each month t−1, all stocks are sorted into deciles by pth of month t−2 using NYSE breakpoints,
and then within each decile, we compute FE of upcoming quarterly earnings for the stocks covered by
analysts, defined as (mean estimatet−1 − actual)/abs(actual), using the data form the IBES summary files.
FE is winsorized at the 5th and 95th percentile each month. The risk of momentum is defined by the realized
volatility of WML, calculated from daily returns in the previous 6 months (126 trading days). The sample is
from 1984:07 to 2019:12. t-statistics adjusted for heteroskedasticity and autocorrelations are in parentheses.

Decile L 2 3 4 5 6 7 8 9 H H-L

Panel A: EW Forecast Errors

Full Sample 0.36
(12.12)

0.31
(12.78)

0.24
(12.16)

0.19
(11.84)

0.15
(11.46)

0.11
(9.86)

0.08
(8.84)

0.06
(7.77)

0.04
(6.09)

0.03
(4.09)

−0.33
(−13.44)

Non-Low RV 0.26
(9.27)

0.23
(10.71)

0.18
(9.89)

0.14
(9.41)

0.11
(8.87)

0.08
(7.30)

0.06
(6.13)

0.04
(5.00)

0.02
(3.33)

0.01
(1.20)

−0.26
(−10.49)

Low RV 0.66
(14.14)

0.55
(11.84)

0.42
(11.25)

0.33
(11.27)

0.27
(11.64)

0.21
(10.26)

0.18
(10.20)

0.14
(9.42)

0.11
(8.25)

0.09
(6.80)

−0.57
(−14.70)

Low − Non-Low
RV

0.40
(7.90)

0.32
(6.59)

0.24
(6.34)

0.19
(6.28)

0.16
(6.60)

0.13
(6.10)

0.12
(6.60)

0.10
(6.12)

0.09
(6.14)

0.09
(5.89)

−0.31
(−7.46)

Panel B: VW Forecast Errors

Full Sample 0.31
(11.33)

0.21
(9.63)

0.16
(7.60)

0.10
(7.30)

0.09
(6.72)

0.06
(6.06)

0.04
(4.44)

0.02
(3.34)

0.01
(1.42)

0.00
(0.38)

−0.31
(−13.16)

Non-Low RV 0.23
(8.67)

0.15
(7.68)

0.11
(5.82)

0.07
(5.15)

0.06
(4.37)

0.04
(3.97)

0.01
(1.88)

0.01
(1.10)

−0.01
(−1.05)

−0.01
(−1.91)

−0.24
(−10.60)

Low RV 0.59
(12.27)

0.41
(8.42)

0.32
(6.35)

0.20
(6.79)

0.18
(7.07)

0.13
(6.01)

0.10
(6.05)

0.07
(4.86)

0.06
(4.33)

0.05
(3.53)

−0.54
(−13.03)

Low − Non-Low
RV

0.37
(7.20)

0.25
(5.10)

0.22
(4.28)

0.13
(4.33)

0.12
(4.67)

0.09
(4.09)

0.09
(4.86)

0.07
(4.21)

0.06
(4.58)

0.06
(4.35)

−0.30
(−6.92)
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Table 10
WML, Momentum Risk and Analyst Forecast Errors
The table reports average equal- and value-weighted analyst forecast error (FE) of the decile portfolios ranked

by r2,12, which is the formation returns from month t−12 to t−2, (un)conditional on the risk of momentum. At
the end of each month t− 1, all stocks are sorted into deciles by r2,12 using NYSE breakpoints, and then within
each decile, we compute FE of upcoming quarterly earnings for the stocks covered by analysts, defined as
(mean estimatet−1 − actual)/abs(actual), using the data from the IBES summary files. FE is winsorized at
the 5th and 95th percentile each month. The risk of momentum is defined by the realized volatility of WML,
calculated from daily returns in the previous 6 months (126 trading days). The sample is from 1984:07 to
2019:12. t-statistics adjusted for heteroskedasticity and autocorrelations are in parentheses.

Decile L 2 3 4 5 6 7 8 9 H H-L

Panel A: EW Forecast Errors

Full Sample 0.36
(12.40)

0.30
(12.79)

0.24
(12.55)

0.19
(12.36)

0.15
(12.27)

0.13
(11.49)

0.10
(10.23)

0.09
(9.76)

0.07
(8.37)

0.04
(4.76)

−0.32
(−13.85)

Non-Low RV 0.27
(9.53)

0.23
(10.35)

0.19
(9.91)

0.15
(9.75)

0.12
(9.29)

0.10
(8.73)

0.07
(7.57)

0.06
(7.13)

0.04
(5.52)

0.01
(1.83)

−0.26
(−10.87)

Low RV 0.65
(14.34)

0.51
(11.70)

0.41
(12.04)

0.33
(11.69)

0.25
(12.86)

0.22
(11.69)

0.20
(10.87)

0.17
(10.85)

0.15
(10.39)

0.12
(7.79)

−0.54
(−14.53)

Low − Non-Low
RV

0.38
(7.85)

0.28
(6.09)

0.22
(6.21)

0.18
(5.98)

0.13
(5.95)

0.13
(6.10)

0.12
(6.44)

0.12
(6.78)

0.10
(6.64)

0.10
(6.44)

−0.28
(−7.14)

Panel B: VW Forecast Errors

Full Sample 0.30
(10.58)

0.19
(8.33)

0.13
(8.24)

0.09
(6.88)

0.07
(6.70)

0.05
(5.55)

0.03
(4.54)

0.02
(3.01)

0.00
(0.65)

−0.03
(−3.78)

−0.33
(−13.36)

Non-Low RV 0.22
(8.18)

0.13
(6.57)

0.09
(6.04)

0.07
(4.81)

0.05
(4.60)

0.03
(3.23)

0.01
(2.03)

−0.00
(−0.02)

−0.01
(−1.45)

−0.04
(−6.27)

−0.26
(−11.26)

Low RV 0.58
(10.48)

0.36
(6.63)

0.24
(7.14)

0.17
(6.55)

0.12
(6.50)

0.12
(6.35)

0.10
(6.54)

0.08
(5.36)

0.05
(3.28)

0.03
(2.02)

−0.55
(−11.04)

Low − Non-Low
RV

0.36
(6.37)

0.23
(4.13)

0.14
(4.24)

0.10
(3.57)

0.07
(3.19)

0.09
(4.50)

0.08
(5.35)

0.08
(5.29)

0.06
(3.92)

0.07
(4.64)

−0.29
(−5.67)
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Table 11
Conditional alphas of long and short legs of PTH and WML
The table reports factor-adjusted returns of long and short legs of PTH and WML. The returns on the long

(short) leg of a zero-cost portfolio are returns on the winner (market) portfolio in excess of returns on the market
(loser) portfolio. We employ the realized volatility of WML, calculated from daily returns in the previous 6
months (126 trading days), to define the volatility state for a holding month. The top (bottom) 30% observations
of the realized volatility series are the High-RV (Low-RV) periods, and the remaining periods are the Medium-
RV periods. ‘Dif’ denotes the difference in alphas between Low-RV and Non-Low-RV months. “CAPM” denotes
the market model proposed by (Sharpe, 1964; Lintner, 1965; Black, 1972). “FF3” denotes the Fama and French
(1993) three-factor model. “Carhart4” denotes the Carhart (1997) 4-factor model consisting of the FF3 factors
plus the Momentum factor. “FF5” denotes the Fama and French (2015) five-factor model. “BF3” denotes the
Daniel, Hirshleifer, and Sun (2020) 3-factor model. “HXZ4” denotes the Hou, Xue, and Zhang (2015) q-factor
model. “HXZa” denotes the alternative q-factor model suggested by Novy-Marx (2015b) where the ROE factor
is decomposed into the lag-ROE and ∆ROE factors. “HXZ5” denotes the Hou et al. (2020) augmented q-factor
model. “FF6” adds the momentum factor (UMD) into the Fama-French 5-factor model (Fama and French,
2018). “NM5” denotes the fundamental momentum factor model suggested by Novy-Marx (2015a) consisting
of FF3 and the earnings-surprise factors (CAR4 and SUE). The sample is from 1972:07 to 2019:12. t-statistics
adjusted for heteroskedasticity are in parentheses.

PTH WML

long − market market − short long − market market − short

Low H+M Dif Low H+M Dif Low H+M Dif Low H+M Dif
Factor-adjusted returns (i.e. alphas)

raw 0.21∗∗
(2.05)

−0.01
(−0.09)

0.22
(1.41)

1.69∗∗∗
(6.83)

0.16
(0.47)

1.53∗∗∗
(3.69)

0.88∗∗∗
(4.42)

0.32∗
(1.69)

0.56∗∗
(2.04)

1.74∗∗∗
(8.19)

0.10
(0.32)

1.64∗∗∗
(4.35)

market 0.24∗∗∗
(2.45)

0.14
(1.28)

0.10
(0.71)

1.79∗∗∗
(8.06)

0.61∗∗
(2.20)

1.17∗∗∗
(3.29)

0.82∗∗∗
(4.32)

0.21
(1.13)

0.60∗∗
(2.25)

1.79∗∗∗
(8.60)

0.46∗
(1.69)

1.32∗∗∗
(3.86)

FF3 0.26∗∗∗
(2.47)

0.21∗∗
(1.96)

0.05
(0.36)

1.53∗∗∗
(8.27)

0.81∗∗∗
(3.16)

0.71∗∗
(2.25)

1.09∗∗∗
(6.82)

0.32∗
(1.94)

0.77∗∗∗
(3.37)

1.60∗∗∗
(8.41)

0.63∗∗∗
(2.37)

0.96∗∗∗
(2.94)

Carhart −0.15
(−1.50)

0.00
(0.01)

−0.15
(−1.19)

0.70∗∗∗
(4.24)

0.25
(1.36)

0.45∗
(1.85)

0.18
(1.26)

−0.02
(−0.15)

0.20
(1.09)

0.48∗∗∗
(3.57)

−0.01
(−0.05)

0.49∗∗∗
(2.38)

FF5 0.19∗
(1.69)

0.11
(0.90)

0.08
(0.47)

1.42∗∗∗
(7.32)

0.54∗
(1.89)

0.89∗∗∗
(2.57)

1.03∗∗∗
(5.60)

0.35∗
(1.91)

0.68∗∗∗
(2.60)

1.51∗∗∗
(6.94)

0.34
(1.15)

1.16∗∗∗
(3.16)

BF3 −0.07
(−0.52)

−0.24∗∗
(−2.10)

0.18
(1.03)

1.06∗∗∗
(4.25)

−0.78∗∗∗
(−2.48)

1.83∗∗∗
(4.58)

0.52∗
(1.89)

0.09
(0.51)

0.42
(1.28)

1.04∗∗∗
(4.31)

−0.70∗∗
(−2.09)

1.74∗∗∗
(4.22)

HXZ4a 0.06
(0.50)

−0.03
(−0.25)

0.09
(0.53)

1.03∗∗∗
(5.34)

−0.05
(−0.17)

1.08∗∗∗
(3.28)

0.71∗∗∗
(3.54)

0.07
(0.36)

0.64∗∗
(2.31)

1.21∗∗∗
(5.48)

−0.28
(−1.02)

1.49∗∗∗
(4.19)

HXZ4 −0.04
(−0.30)

−0.05
(−0.44)

0.01
(0.08)

0.93∗∗∗
(4.61)

−0.00
(−0.00)

0.93∗∗∗
(2.76)

0.38∗∗
(2.17)

−0.02
(−0.14)

0.40∗
(1.71)

1.04∗∗∗
(4.66)

−0.30
(−1.13)

1.34∗∗∗
(3.86)

HXZ5 −0.04
(−0.30)

−0.16
(−1.31)

0.12
(0.65)

0.76∗∗∗
(3.42)

−0.29
(−1.10)

1.05∗∗∗
(3.06)

0.43∗∗
(2.01)

−0.11
(−0.53)

0.54∗
(1.82)

0.86∗∗∗
(3.61)

−0.55∗∗
(−2.02)

1.41∗∗∗
(3.90)

FF6 −0.19∗
(−1.95)

−0.03
(−0.43)

−0.15
(−1.24)

0.67∗∗∗
(4.03)

0.14
(0.80)

0.52∗∗
(2.13)

0.20
(1.39)

0.11
(1.04)

0.08
(0.48)

0.48∗∗∗
(3.19)

−0.10
(−0.66)

0.58∗∗∗
(2.73)

NM5 −0.05
(−0.41)

−0.21∗∗
(−1.99)

0.15
(0.92)

0.62∗∗∗
(2.87)

−0.30
(−1.02)

0.91∗∗∗
(2.54)

0.29
(1.38)

−0.23
(−1.49)

0.52∗∗
(2.00)

0.52∗∗∗
(2.40)

−0.49∗
(−1.67)

1.01∗∗∗
(2.77)
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Table 12
PTH vs WML: Spanning Test
This table presents results of time-series regression of the form:

yt = α+ β′Xt + εt

where the yt are the monthly excess returns to the 52-week high factor (PTHf ), the price momentum factor (UMD), high-minus-low 52-week high decile (PTH), or
winner-minus-loser decile (WML), and main explanatory variable is the other factor portfolio or the other high-minus-low decile. Control variables are the returns
to the Fama-French three factors (MKT, SMB, and HML). The sample covers July 1927 through December 2019. Heteroskedasticity-adjusted t-statistics are shown
in parentheses.

y = PTHf y = UMD y = PTH y = WML

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

α 0.42∗∗∗
(2.60)

−0.18∗
(−1.69)

0.26∗∗∗
(4.14)

0.65∗∗∗
(4.59)

0.35∗∗∗
(3.73)

0.08
(0.99)

0.42
(1.63)

−0.57∗∗∗
(−3.29)

0.13
(1.07)

1.14∗∗∗
(4.86)

0.84∗∗∗
(5.60)

0.54∗∗∗
(3.84)

βMKT −0.32∗∗∗
(−11.40)

0.22∗∗∗
(9.14)

−0.43∗∗∗
(−14.28)

0.24∗∗∗
(6.18)

βSMB −0.42∗∗∗
(−10.16)

0.37∗∗∗
(8.11)

−0.81∗∗∗
(−10.69)

0.64∗∗∗
(8.94)

βHML −0.07∗
(−1.70)

−0.09∗
(−1.94)

−0.09
(−1.50)

−0.20∗∗∗
(−2.78)

βUMD 0.92∗∗∗
(23.57)

0.74∗∗∗
(28.77)

βPTHf 0.70∗∗∗
(13.86)

0.91∗∗∗
(22.28)

βWML 0.87∗∗∗
(22.42)

0.68∗∗∗
(23.54)

βPTH 0.72∗∗∗
(18.87)

0.90∗∗∗
(25.03)
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Table 13
Panel A: Past Performance vs Nearness to the 52-week High: unconditional Fama and MacBeth (1973) regression
This panel presents results of Fama and MacBeth (1973) regressions, with weighted least squares, of individual monthly

stock returns in month t onto past performance, measured over the preceding year skipping the most recent month (r2,12),
and/or the ratio of stock price in month t− 2 to its 52-week high (pth). We use market equity of stocks in month t− 1 as
weights. Controls are variables known to predict cross sectional variation in expected returns including the log of stocks’
market capitalisation (Ln(ME)), the log of firms’ book-to-market ratios (Ln(B/M)), and stocks’ prior month returns (r0,1).
Independent variables are winsorised at the 1% and 99% levels. The sample covers July 1927 through December 2019.
Heteroskedasticity-adjusted t-statistics are shown in parentheses.

(1) (2) (3) (4)

r2,12 0.88∗∗∗
(3.91)

1.23∗∗∗
(5.41)

1.23∗∗∗
(5.63)

pth 1.71∗∗∗
(3.16)

−0.10
(−0.16)

−0.37
(−0.63)

Ln(ME) −0.02
(−0.80)

Ln(B/M) 0.14∗∗
(2.11)

r0,1 −0.04∗∗∗
(−8.09)
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Table 13 (continued)
Panel B: Past Performance vs Nearness to the 52-week High: conditional Fama and MacBeth (1973) regressions
This panel presents results of conditional Fama and MacBeth (1973) regressions, with weighted least squares, of individual monthly stock returns in month t onto
past performance, measured over the preceding year skipping the most recent month (r2,12), and/or the ratio of stock price in month t−2 to its 52-week high (pth).
We employ the realized volatility of WML, calculated from daily returns in the previous 6 months (126 trading days), to define the volatility state for month t.
The top (bottom) 30% observations of the realized volatility series are the High-RV (Low-RV) periods. We use market equity of stocks in month t− 1 as weights.
Controls are variables known to predict cross sectional variation in expected returns including the log of stocks’ market capitalisation (Ln(ME)), the log of firms’
book-to-market ratios (Ln(B/M)), and stocks’ prior month returns (r0,1). Independent variables are winsorised at the 1% and 99% levels. The sample covers July
1927 through December 2019. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

High-RV Low-RV Low − High

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

r2,12 0.02
(0.05)

1.03∗∗
(2.10)

0.73∗
(1.74)

1.95∗∗∗
(6.02)

1.49∗∗∗
(4.14)

1.56∗∗∗
(4.51)

1.92∗∗∗
(3.14)

0.46
(0.75)

0.82
(1.51)

pth 0.60
(0.50)

−0.98
(−0.68)

−0.71
(−0.57)

4.08∗∗∗
(5.76)

1.50∗
(1.77)

0.96
(1.17)

3.47∗∗∗
(2.49)

2.47
(1.48)

1.67
(1.12)

Ln(ME) −0.16∗∗∗
(−2.50)

0.01
(0.17)

0.17∗∗
(2.16)

Ln(B/M) 0.09
(0.76)

0.03
(0.29)

−0.06
(−0.35)

r0,1 −0.03∗∗∗
(−2.99)

−0.05∗∗∗
(−5.98)

−0.02
(−1.34)

45



Table 14
Alphas and Market States
This table presents the raw or factor-adjusted returns of the high-minus-low deciles on past performance (WML)
and the ratio of current price to 52-week high price (PTH) across market states, defined by the cumulative past
one-year return on the market. At the end of each month t − 1, all common stocks traded on NYSE, AMEX
and NASDAQ are sorted into deciles based on their prior 11-month returns from t − 12 to t − 2 (the ratio
of current price to 52-week high price of t − 2) using NYSE breakpoints. We skip month t − 1 and calculate
monthly value-weighted returns for each decile for month t. The deciles are rebalanced at the end of month
t.To identify the state of market for month t, we calculate the cumulative past one-year market return. If the
return is non-negative (negative), the holding month is defined as “Up” (“DOWN”). “CAPM” denotes the
market model proposed by (Sharpe, 1964; Lintner, 1965; Black, 1972). “FF3” denotes the Fama and French
(1993) three-factor model. “Carhart4” denotes the Carhart (1997) 4-factor model consisting of the FF3 factors
plus the Momentum factor. “FF5” denotes the Fama and French (2015) five-factor model. The sample period
in Panel A runs from January 1927 to December 2019, while the sample period in Panel B runs from July 1972
to December 2019, the sample period used in our tests. Heteroskedasticity-adjusted t-statistics are shown in
parentheses.

Market States
DOWN Up Up − DOWN

Panel A: Jan 1927 - Dec 2019
rWML 0.00

(0.01)
1.55∗∗∗

(8.27)
1.54∗∗
(2.04)

rPTH −0.58
(−0.71)

0.79∗∗∗
(3.85)

1.37
(1.63)

αCAPM
WML

0.28
(0.56)

1.44∗∗∗
(7.92)

1.16∗∗
(2.15)

αCAPM
PTH

−0.26
(−0.48)

1.24∗∗∗
(7.23)

1.50∗∗∗
(2.66)

αFF3
WML

0.68
(1.50)

1.58∗∗∗
(8.67)

0.90∗
(1.84)

αFF3
PTH

0.21
(0.49)

1.36∗∗∗
(8.48)

1.15∗∗∗
(2.46)

αCarhart4
PTH

−0.33
(−1.34)

0.54∗∗∗
(4.10)

0.87∗∗∗
(3.11)

Panel B: July 1972 - Dec 2019
rWML −0.12

(−0.13)
1.42∗∗∗

(5.31)
1.55
(1.53)

rPTH −0.51
(−0.48)

1.01∗∗∗
(3.99)

1.52
(1.38)

αCAPM
WML

−0.01
(−0.01)

1.29∗∗∗
(4.83)

1.30
(1.54)

αCAPM
PTH

−0.36
(−0.45)

1.31∗∗∗
(5.46)

1.67∗∗
(2.00)

αFF3
WML

0.43
(0.60)

1.55∗∗∗
(5.68)

1.12
(1.46)

αFF3
PTH

0.18
(0.26)

1.36∗∗∗
(5.68)

1.18∗
(1.68)

αCarhart4
PTH

−0.29
(−0.88)

0.42∗∗∗
(2.49)

0.71∗
(1.90)

αFF5
WML

−0.47
(−0.66)

1.59∗∗∗
(5.58)

2.06∗∗∗
(2.68)

αFF5
PTH

−0.87
(−1.40)

1.28∗∗∗
(5.03)

2.15∗∗∗
(3.20)
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Table 15
Panel A: Pricing of PTH and Market States

This table presents the alphas and factor loadings from time-series regressions of the high-minus-low 52-week
high decile (PTH) on the well-documented sets of asset-pricing factors in the two market states. To identify
the state of market for month t, we calculate the cumulative past one-year market return. If the return is non-
negative (negative), the holding month is defined as “Up” (”DOWN”). “BF3” denotes the Daniel, Hirshleifer,
and Sun (2020) 3-factor model. “HXZ4” denotes the Hou, Xue, and Zhang (2015) q-factor model. “HXZ4a”
denotes the alternative q-factor model suggested by Novy-Marx (2015b) where the ROE factor is decomposed
into the lag-ROE and ∆ROE factors. ”HXZ5” denotes the Hou et al. (2020) augmented q-factor model. “FF6”
adds the momentum factor (UMD) into the Fama-French 5-factor model (Fama and French, 2018). “NM5”
denotes the fundamental momentum factor model suggested by Novy-Marx (2015a) consisting of FF3 and the
earnings-surprise factors (CAR4 and SUE). The factors are the market (MKT), post-earnings announcement
drift (PEAD), financing (FIN), size (ME or SMB), investment (IA), return on equity (ROE), lagged earnings-
to-book equity (lagged-ROE), earnings innovations-to-book equity (∆ROE), value (HML), conservative-minus-
aggressive (CMA), robust-minus-weak (RMW), momentum (UMD), and earnings surprise (SUE and CAR4).
The sample is 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

UP Market DOWN Market

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5

α −0.05
(−0.18)

0.82∗∗∗
(3.02)

0.64∗∗∗
(2.65)

0.42
(1.55)

0.33∗
(1.91)

0.11
(0.48)

−2.24∗∗∗
(−2.78)

−1.40∗∗∗
(−2.58)

−1.58∗∗∗
(−2.62)

−1.52∗∗∗
(−2.73)

−0.47
(−1.46)

−1.60∗∗
(−2.30)

βMKT −0.30∗∗∗
(−4.81)

−0.35∗∗∗
(−5.11)

−0.48∗∗∗
(−6.58)

−0.30∗∗∗
(−4.47)

−0.41∗∗∗
(−8.71)

−0.40∗∗∗
(−7.01)

−0.45∗∗∗
(−2.54)

−0.64∗∗∗
(−5.95)

−0.81∗∗∗
(−5.65)

−0.61∗∗∗
(−4.63)

−0.18∗∗
(−2.16)

−0.84∗∗∗
(−8.10)

βPEAD 1.37∗∗∗
(8.14)

1.86∗∗∗
(2.97)

βFIN 0.47∗∗∗
(8.14)

1.14∗∗∗
(2.97)

βME −0.38∗∗∗
(−2.47)

−0.62∗∗∗
(−4.75)

−0.33∗∗
(−2.20)

−0.54∗∗∗
(−3.11)

−0.51∗∗∗
(−2.86)

−0.51∗∗∗
(−2.73)

βIA 0.01
(0.05)

0.08
(0.42)

−0.05
(−0.28)

0.96∗∗∗
(2.98)

0.75∗
(1.93)

0.91∗∗∗
(3.26)

βROE 0.84∗∗∗
(5.04)

0.63∗∗∗
(3.49)

1.80∗∗∗
(6.98)

1.75∗∗∗
(5.43)

βlag−ROE −0.14
(−0.74)

1.03∗∗∗
(3.29)

β∆ROE 1.09∗∗∗
(7.20)

1.64∗∗∗
(3.94)

βEG 0.61∗∗∗
(3.87)

0.18
(0.49)

βSMB −0.77∗∗∗
(−10.18)

−0.61∗∗∗
(−6.41)

−0.46∗∗∗
(−3.89)

−0.63∗∗∗
(−3.03)

βHML 0.18∗
(1.86)

−0.03
(−0.32)

0.20
(1.61)

0.81∗∗∗
(4.25)

βCMA 0.15
(0.97)

0.07
(0.42)

βRMW 0.25∗
(1.68)

0.31∗
(1.69)

βUMD 1.05∗∗∗
(13.53)

1.41∗∗∗
(10.24)

βSUE 0.73∗∗∗
(4.63)

2.25∗∗∗
(6.07)

βCAR4 1.41∗∗∗
(6.17)

0.13
(0.31)

R2
adj 0.34 0.28 0.32 0.31 0.23 0.44 0.62 0.77 0.75 0.77 0.64 0.75
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Table 15 (continued)
Panel B: Changes in alphas and factor loadings for PTH across market states
This table presents the changes in alphas and factor loadings from time-series regressions of the high-minus-
low 52-week high decile (PTH) conditional on past market returns. The sample is from 1972:07 to 2019:12.
Heteroskedasticity-adjusted t-statistics are shown in parentheses.

UP − DOWN

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5
α 2.19∗∗∗

(2.60)
2.21∗∗∗

(3.66)
2.22∗∗∗

(3.42)
1.94∗∗∗

(3.13)
0.80∗∗
(2.19)

1.71∗∗∗
(2.34)

βMKT 0.16
(0.83)

0.29∗∗
(2.24)

0.33∗∗
(2.05)

0.31∗∗
(2.10)

−0.23∗∗∗
(−2.38)

0.45∗∗∗
(3.77)

βPEAD −0.49
(−0.76)

βFIN −0.67∗∗∗
(−2.87)

βME 0.16
(0.68)

−0.11
(−0.52)

0.18
(0.74)

βIA −0.95∗∗∗
(−2.51)

−0.67
(−1.57)

−0.96∗∗∗
(−2.83)

βROE −0.96∗∗∗
(−3.14)

−1.12∗∗∗
(−3.03)

βlag−ROE −1.17∗∗∗
(−3.20)

β∆ROE −0.55
(−1.24)

βEG 0.43
(1.08)

βSMB −0.31∗∗
(−2.19)

0.02
(0.07)

βHML −0.02
(−0.15)

−0.84∗∗∗
(−3.92)

βCMA 0.07
(0.31)

βRMW −0.06
(−0.27)

βUMD −0.35∗∗
(−2.24)

βSUE −1.53∗∗∗
(−3.79)

βCAR4 1.28∗∗∗
(2.64)
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Table 16
Panel A: Pricing of WML and Market States
This table presents the alphas and factor loadings from time-series regressions of the high-minus-low price

momentum decile (WML) on the well-documented sets of asset-pricing factors in the two market states. To
identify the state of market for month t, we calculate the cumulative past one-year market return. If the
return is non-negative (negative), the holding month is defined as “UP” (“DOWN”). “BF3” denotes the
Daniel, Hirshleifer, and Sun (2020) 3-factor model. “HXZ4” denotes the Hou, Xue, and Zhang (2015) q-factor
model. “HXZ4a” denotes the alternative q-factor model suggested by Novy-Marx (2015b) where the ROE
factor is decomposed into the lag-ROE and ∆ROE factors. “HXZ5” denotes the Hou et al. (2020) augmented
q-factor model.“NM5” denotes the fundamental momentum factor model suggested by Novy-Marx (2015a)
consisting of FF3 and the earnings-surprise factors (CAR4 and SUE). The factors are the market (MKT),
post-earnings announcement drift (PEAD), financing (FIN), size (ME or SMB), investment (IA), return on
equity (ROE), lagged earnings-to-book equity (lagged-ROE), earnings innovations-to-book equity (∆ROE),
value (HML), momentum (UMD), and earnings surprise (SUE and CAR4). The sample is from 1972:07 to
2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

UP Market DOWN Market

BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5

α 0.55∗
(1.84)

1.00∗∗∗
(3.14)

0.46∗
(1.85)

0.52
(1.63)

0.21
(0.74)

−1.69∗∗
(−2.04)

−1.09∗
(−1.76)

−1.30∗∗
(−1.99)

−1.20∗
(−1.91)

−1.56∗∗
(−2.20)

βMKT 0.09
(1.15)

0.07
(0.87)

−0.18∗∗∗
(−2.47)

0.13
(1.64)

−0.03
(−0.43)

−0.24
(−1.41)

−0.40∗∗∗
(−3.62)

−0.61∗∗∗
(−4.34)

−0.38∗∗∗
(−2.57)

−0.56∗∗∗
(−5.33)

βPEAD 1.35∗∗∗
(6.31)

2.09∗∗∗
(3.34)

βFIN −0.19∗
(−1.90)

0.87∗∗∗
(3.94)

βME 0.41∗∗∗
(2.76)

−0.02
(−0.18)

0.47∗∗∗
(3.17)

−0.24
(−1.08)

−0.14
(−0.57)

−0.21
(−0.94)

βIA −0.46∗∗
(−2.14)

−0.35∗∗
(−2.10)

−0.54∗∗∗
(−2.49)

0.75∗∗
(2.08)

0.48
(1.16)

0.70∗∗
(2.22)

βROE 0.82∗∗∗
(4.65)

0.57∗∗∗
(2.79)

1.78∗∗∗
(6.33)

1.73∗∗∗
(4.85)

βlag−ROE −0.79∗∗∗
(−5.28)

0.65∗∗∗
(2.33)

β∆ROE 1.77∗∗∗
(12.39)

1.94∗∗∗
(4.89)

βEG 0.74∗∗∗
(3.42)

0.16
(0.37)

βSMB 0.27∗∗
(2.29)

−0.15
(−0.66)

βHML −0.29∗∗∗
(−2.38)

0.76∗∗∗
(3.76)

βSUE 1.21∗∗∗
(6.82)

2.42∗∗∗
(6.61)

βCAR4 1.01∗∗∗
(3.51)

0.34
(0.83)

R2
adj 0.34 0.28 0.32 0.31 0.44 0.62 0.77 0.75 0.77 0.75
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Table 16 (continued)
Panel B: Changes in alphas and factor loadings for WML across market states
This panel presents the changes in alphas and factor loadings from the time-series regressions of the high-minus-
low price momentum decile (WML) conditional on the past market returns. The sample is from 1972:07 to
2019:12. Heteroskedasticity-adjusted t-statistic is shown in parentheses.

UP − DOWN

BF3 HXZ4 HXZ4a HXZ5 NM5
α 2.25∗∗∗

(2.55)
2.09∗∗∗

(3.00)
1.76∗∗∗

(2.51)
1.72∗∗∗

(2.44)
1.77∗∗
(2.32)

βMKT 0.34∗
(1.77)

0.47∗∗∗
(3.45)

0.43∗∗∗
(2.70)

0.51∗∗∗
(3.04)

0.53∗∗∗
(4.23)

βPEAD −0.74
(−1.12)

βFIN −1.06∗∗∗
(−4.37)

βME 0.65∗∗∗
(2.44)

0.11
(0.42)

0.68∗∗∗
(2.51)

βIA −1.21∗∗∗
(−2.88)

−0.83∗
(−1.86)

−1.24∗∗∗
(−3.24)

βROE −0.96∗∗∗
(−2.89)

−1.16∗∗∗
(−2.82)

βlag−ROE −1.44∗∗∗
(−4.56)

β∆ROE −0.17
(−0.40)

βEG 0.58
(1.19)

βSMB 0.42
(1.64)

βHML −1.05∗∗∗
(−4.45)

βSUE −1.21∗∗∗
(−2.97)

βCAR4 0.67
(1.33)
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Table 17
Market Timing Regression Results

This table reports the results of estimating six specifications of a monthly time-series regressions from January 1927 to
December 2019. The dependent variable in the first (last) three specifications is the return on the WML (PTH) portfolio.
Similar to Daniel and Moskowitz (2016), the independent variables are a constant, the DOWN-marker indicator, IB,t−1,
which equals one if the cumulative past one-year market return is negative, the excess market return, Re

m,r, and a
contemporaneous market return, IU,t, which equals one if Re

m,r is positive.Heteroskedasticity-adjusted t-statistics are
shown in parentheses.

PTH WML

Coefficient Variable Estimates (t-statistics) Estimates (t-statistics)

(1) (2) (3) (4) (5) (6)
α 1 1.08∗∗∗

(5.61)
1.24∗∗∗

(7.23)
1.24∗∗∗

(7.23)
1.50∗∗∗

(7.39)
1.44∗∗∗

(7.92)
1.44∗∗∗

(7.92)

αB IB,t−1 −1.50∗∗∗
(−2.66)

1.08
(1.47)

−1.16∗∗
(−2.15)

1.10
(1.45)

βm Re
m,t −0.96∗∗∗

(−11.41)
−0.56∗∗∗

(−7.48)
−0.56∗∗∗

(−7.48)
−0.52∗∗∗

(−5.06)
0.13∗∗
(2.01)

0.13∗∗
(2.01)

βB IB,t−1Re
m,t −0.78∗∗∗

(−5.67)
−0.24∗
(−1.68)

−1.29∗∗∗
(−9.62)

−0.82∗∗∗
(−6.51)

βB,U IB,t−1IU,tR
e
m,t −0.97∗∗∗

(−3.77)
−0.85∗∗∗

(−3.27)
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Appendix

We reports the conditional performance of the factor models using several alternative state variables
known to predict momentum payoffs.

Table A1, Table A2, and Table A3 use market volatility to define the state of a holding month.
Following Wang and Xu (2015), a month is defined as high (low) volatility if the past 12-month market
volatility is higher (lower) than the lagged 36-month market volatility.

Table A4, Table A5, and Table A6 use cross-sectional return dispersion of Stivers and Sun (2010)
to define the state of a holding month. A month’s RD is the cross-sectional standard deviation of the
monthly returns of 100 BM&SZ portfolios:

RDt =

√√√√ 1

n− 1

n∑
i=1

(Ri,t −Rµ,t)2, (16)

where n is the number of disaggregate portfolios, Ri,t is the return of portfolio i in month t, and Rµ,t is
the equal-weighted returns of the 100 portfolios for month t.
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Table A1
Alphas and Market Volatility.

This table presents the raw and factor-adjusted returns of the high-minus-low deciles on past performance
(WML) and the ratio of current price to 52-week high price (PTH) across market volatility states. At the end
of each month t − 1, all common stocks traded on NYSE, AMEX and NASDAQ are sorted into deciles based
on their prior 11-month returns from t − 12 to t − 2 (the ratio of current price to 52-week high price of t − 2)
using NYSE breakpoints. We skip month t− 1 and calculate monthly value-weighted returns for each decile for
month t. A month is defined as high (low) volatility if the past 12-month market volatility is higher (lower) than
the lagged 36-month market volatility.“CAPM” denotes the market model proposed by (Sharpe, 1964; Lintner,
1965; Black, 1972). “FF3” denotes the Fama and French (1993) three-factor model. “Carhart4” denotes the
Carhart (1997) 4-factor model consisting of the FF3 factors plus the Momentum factor. “FF5” denotes the
Fama and French (2015) five-factor model. The sample period in Panel A runs from January 1927 to December
2019, while the sample period in Panel B runs from July 1972 to December 2019, the sample period used in
our tests. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

Market Volatility

High Low Low − High

Panel A: Jan 1927 - Dec 2019

rWML 0.46
(1.06)

1.60∗∗∗
(6.52)

1.14∗∗∗
(2.40)

rPTH −0.06
(−0.13)

0.83∗∗∗
(2.97)

0.89∗
(1.69)

αCAPM
WML

0.88∗∗∗
(2.43)

1.76∗∗∗
(7.64)

0.88∗∗
(2.04)

αCAPM
PTH

0.56
(1.60)

1.38∗∗∗
(6.59)

0.82∗∗
(2.03)

αFF3
WML

1.20∗∗∗
(3.51)

1.91∗∗∗
(8.47)

0.71∗
(1.73)

αFF3
PTH

0.87∗∗∗
(2.95)

1.57∗∗∗
(7.91)

0.70∗∗
(1.98)

αCarhart4
PTH

0.12
(0.61)

0.29∗
(1.68)

0.17
(0.67)

Panel B: July 1972 - Dec 2019

rWML 0.40
(0.76)

1.72∗∗∗
(5.61)

1.32∗∗
(2.20)

rPTH 0.03
(0.06)

1.27∗∗∗
(4.30)

1.24∗∗
(2.01)

αCAPM
WML

0.58
(1.17)

1.76∗∗∗
(5.90)

1.18∗∗
(2.03)

αCAPM
PTH

0.44
(0.93)

1.69∗∗∗
(6.69)

1.26∗∗∗
(2.36)

αFF3
WML

0.98∗∗
(2.06)

1.82∗∗∗
(5.84)

0.84
(1.47)

αFF3
PTH

0.70∗
(1.67)

1.74∗∗∗
(6.40)

1.04∗∗
(2.09)

αCarhart4
PTH

0.08
(0.34)

0.42∗
(1.92)

0.34
(1.08)

αFF5
WML

0.51
(0.90)

1.86∗∗∗
(5.41)

1.35∗∗
(2.05)

αFF5
PTH

0.12
(0.26)

1.66∗∗∗
(5.42)

1.55∗∗∗
(2.80)
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Table A2
Panel A: Pricing of PTH and Market Volatility states
This panel presents the alphas and factor loadings from time-series regressions of the high-minus-low 52-week

high decile (PTH) on the well-documented sets of asset-pricing factors in the two market volatility states. A
month is defined as high (low) volatility if the past 12-month market volatility is higher (lower) than the lagged
36-month market volatility. “BF3” denotes the Daniel, Hirshleifer, and Sun (2020) 3-factor model. “HXZ4”
denotes the Hou, Xue, and Zhang (2015) q-factor model. “HXZ4a” denotes the alternative q-factor model
suggested by Novy-Marx (2015b) where the ROE factor is decomposed into the lag-ROE and ∆ROE factors.
”HXZ5” denotes the Hou et al. (2020) augmented q-factor model. “FF6” adds the momentum factor (UMD) into
the Fama-French 5-factor model (Fama and French, 2018). “NM5” denotes the fundamental momentum factor
model suggested by Novy-Marx (2015a) consisting of FF3 and the earnings-surprise factors (CAR4 and SUE).
The factors are the market (MKT), post-earnings announcement drift (PEAD), financing (FIN), size (ME
or SMB), investment (IA), return on equity (ROE), lagged earnings-to-book equity (lagged-ROE), earnings
innovations-to-book equity (∆ROE), value (HML), conservative-minus-aggressive (CMA), robust-minus-weak
(RMW), momentum (UMD), and earnings surprise (SUE and CAR4). The sample is from 1972:07 to 2019:12.
Heteroskedasticity-adjusted t-statistics are shown in parentheses.

High MVOL Low MVOL

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5

α −1.38∗∗∗
(−2.69)

−0.66∗
(−1.72)

−0.69
(−1.61)

−0.81∗
(−1.94)

−0.07
(−0.31)

−1.03∗∗
(−2.23)

0.30
(1.18)

1.27∗∗∗
(3.71)

1.13∗∗∗
(3.88)

0.60∗
(1.79)

0.33
(1.50)

0.46
(1.63)

βMKT −0.38∗∗∗
(−3.73)

−0.40∗∗∗
(−4.51)

−0.59∗∗∗
(−5.66)

−0.38∗∗∗
(−3.87)

−0.28∗∗∗
(−6.07)

−0.54∗∗∗
(−6.91)

−0.40∗∗∗
(−5.13)

−0.60∗∗∗
(−7.27)

−0.71∗∗∗
(−8.33)

−0.50∗∗∗
(−5.83)

−0.48∗∗∗
(−8.01)

−0.56∗∗∗
(−7.22)

βPEAD 1.94∗∗∗
(5.01)

1.25∗∗∗
(6.94)

βFIN 0.84∗∗∗
(5.01)

0.45∗∗∗
(6.94)

βME −0.55∗∗∗
(−4.91)

−0.70∗∗∗
(−5.69)

−0.54∗∗∗
(−4.61)

−0.14
(−0.79)

−0.33∗∗
(−2.08)

−0.05
(−0.27)

βIA 0.44
(1.55)

0.34
(1.14)

0.38
(1.47)

0.16
(0.58)

0.20
(0.73)

0.10
(0.37)

βROE 1.74∗∗∗
(7.47)

1.66∗∗∗
(5.80)

0.63∗∗∗
(3.01)

0.42∗
(1.94)

βlag−ROE 0.42
(1.60)

−0.04
(−0.12)

β∆ROE 1.63∗∗∗
(5.72)

0.92∗∗∗
(5.20)

βEG 0.22
(0.88)

0.96∗∗∗
(5.36)

βSMB −0.84∗∗∗
(−8.84)

−0.71∗∗∗
(−5.76)

−0.67∗∗∗
(−7.61)

−0.41∗∗∗
(−3.72)

βHML 0.47∗∗∗
(4.95)

0.25∗
(1.74)

−0.09
(−0.71)

0.13
(1.01)

βCMA 0.03
(0.24)

0.16
(0.83)

βRMW 0.41∗∗∗
(2.59)

0.23
(1.62)

βUMD 1.17∗∗∗
(11.95)

1.14∗∗∗
(13.60)

βSUE 1.70∗∗∗
(5.79)

0.66∗∗∗
(3.45)

βCAR4 0.88∗∗∗
(2.91)

1.47∗∗∗
(5.61)

R2
adj 0.50 0.63 0.60 0.63 0.44 0.63 0.41 0.29 0.32 0.34 0.25 0.43
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Table A2 (continued)
Panel B: Changes in alphas and factor loadings for PTH across market volatility states
This panels presents the changes in alphas and factor loadings from the time-series regressions of the high-
minus-low decile on the ratio of current price to 52-week high price (PTH) conditional on the level of market
volatility.The sample is from 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in paren-
theses.

Low − High

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5
α 1.68∗∗∗

(2.93)
1.93∗∗∗

(3.74)
1.82∗∗∗

(3.51)
1.41∗∗∗

(2.64)
0.40
(1.26)

1.49∗∗∗
(2.75)

βMKT −0.02
(−0.16)

−0.20
(−1.61)

−0.12
(−0.86)

−0.12
(−0.88)

−0.20∗∗∗
(−2.62)

−0.02
(−0.18)

βPEAD −0.69
(−1.63)

βFIN −0.39∗∗∗
(−2.39)

βME 0.42∗∗
(2.01)

0.37∗
(1.86)

0.49∗∗∗
(2.38)

βIA −0.28
(−0.71)

−0.14
(−0.35)

−0.29
(−0.78)

βROE −1.11∗∗∗
(−3.53)

−1.24∗∗∗
(−3.44)

βlag−ROE −0.46
(−1.13)

β∆ROE −0.70∗∗
(−2.10)

βEG 0.74∗∗∗
(2.40)

βSMB 0.17
(1.32)

0.29∗
(1.78)

βHML −0.55∗∗∗
(−3.63)

−0.13
(−0.66)

βCMA 0.13
(0.53)

βRMW −0.18
(−0.83)

βUMD −0.03
(−0.26)

βSUE −1.04∗∗∗
(−2.97)

βCAR4 0.59
(1.47)
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Table A3
Panel A: Pricing of WML and Market Volatility
This panel presents the alphas and factor loadings from time-series regressions of the high-minus-low price

momentum decile (WML) on the well-documented sets of asset-pricing factors in the two market volatility
states. A month is defined as high (low) volatility if the past 12-month market volatility is higher (lower) than
the lagged 36-month market volatility. “BF3” denotes the Daniel, Hirshleifer, and Sun (2020) 3-factor model.
“HXZ4” denotes the Hou, Xue, and Zhang (2015) q-factor model. “HXZ4a” denotes the alternative q-factor
model suggested by Novy-Marx (2015b) where the ROE factor is decomposed into the lag-ROE and ∆ROE
factors. “HXZ5” denotes the Hou et al. (2020) augmented q-factor model. “NM5” denotes the fundamental
momentum factor model suggested by Novy-Marx (2015a) consisting of FF3 and the earnings-surprise factors
(CAR4 and SUE). The factors are the market (MKT), post-earnings announcement drift (PEAD), financing
(FIN), size (ME or SMB), investment (IA), return on equity (ROE), lagged earnings-to-book equity (lagged-
ROE), earnings innovations-to-book equity (∆ROE), value (HML) and earnings surprise (SUE and CAR4).
The sample is from 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

High MVOL Low MVOL

BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5

α −0.83
(−1.39)

−0.37
(−0.74)

−0.59
(−1.22)

−0.63
(−1.20)

−0.93∗
(−1.88)

0.75∗∗
(2.23)

1.37∗∗∗
(3.52)

0.92∗∗∗
(3.19)

0.55
(1.55)

0.33
(1.03)

βMKT −0.16
(−1.34)

−0.13
(−1.23)

−0.39∗∗∗
(−3.75)

−0.09
(−0.80)

−0.28∗∗∗
(−3.23)

0.02
(0.18)

−0.16∗
(−1.65)

−0.37∗∗∗
(−3.98)

−0.03
(−0.36)

−0.13
(−1.54)

βPEAD 2.10∗∗∗
(5.30)

1.40∗∗∗
(4.93)

βFIN 0.29
(1.54)

−0.02
(−0.14)

βME −0.02
(−0.09)

−0.18
(−1.06)

0.01
(0.07)

0.74∗∗∗
(4.68)

0.38∗∗∗
(2.40)

0.86∗∗∗
(5.62)

βIA −0.23
(−0.65)

−0.28
(−0.78)

−0.33
(−0.99)

0.10
(0.34)

0.13
(0.53)

0.02
(0.07)

βROE 1.83∗∗∗
(6.92)

1.69∗∗∗
(5.26)

0.56∗∗∗
(2.45)

0.30
(1.21)

βlag−ROE −0.12
(−0.45)

−0.51∗
(−1.93)

β∆ROE 2.14∗∗∗
(8.41)

1.55∗∗∗
(8.66)

βEG 0.39
(1.17)

1.17∗∗∗
(5.25)

βSMB −0.02
(−0.14)

0.56∗∗∗
(3.98)

βHML −0.15
(−0.85)

0.31∗∗
(2.05)

βSUE 2.02∗∗∗
(6.37)

1.18∗∗∗
(5.36)

βCAR4 0.77∗∗∗
(2.37)

1.27∗∗∗
(3.86)

R2
adj 0.50 0.63 0.60 0.63 0.63 0.41 0.29 0.32 0.34 0.43
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Table A3 (continued)
Panel B: Changes in alphas and factor loadings for WML across market volatility states
This table presents the changes in alphas and factor loadings from the time-series regressions of the high-minus-
low price momentum decile (WML) conditional on the level of market volatility. The sample is 1972:07 to
2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

Low − High

BF3 HXZ4 HXZ4a HXZ5 NM5

α 1.58∗∗
(2.30)

1.73∗∗∗
(2.76)

1.51∗∗∗
(2.68)

1.18∗
(1.86)

1.26∗∗
(2.14)

βMKT 0.18
(1.16)

−0.03
(−0.20)

0.02
(0.15)

0.06
(0.39)

0.15
(1.21)

βPEAD −0.70
(−1.43)

βFIN −0.30
(−1.31)

βME 0.76∗∗∗
(3.20)

0.56∗∗∗
(2.41)

0.84∗∗∗
(3.57)

βIA 0.33
(0.72)

0.40
(0.94)

0.35
(0.81)

βROE −1.28∗∗∗
(−3.66)

−1.39∗∗∗
(−3.44)

βlag−ROE −0.39
(−1.04)

β∆ROE −0.59∗
(−1.91)

βEG 0.78∗∗
(1.97)

βSMB 0.58∗∗∗
(2.65)

βHML 0.46∗∗
(1.96)

βSUE −0.85∗∗
(−2.19)

βCAR4 0.50
(1.08)
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Table A4
Alphas and Cross-Sectional Return Dispersion
This table presents the raw and factor-adjusted returns of the high-minus-low deciles on past performance

(WML) and the ratio of current price to 52-week high price (PTH) across different levels of cross-sectional
return dispersion. At the end of each month t− 1, all common stocks traded on NYSE, AMEX and NASDAQ
are sorted into deciles based on their prior 11-month returns from t − 12 to t − 2 (the ratio of current price
to 52-week high price of t − 2) using NYSE breakpoints. We skip month t − 1 and calculate monthly value-
weighted returns for each decile for month t. The deciles are held for one month and rebalanced at the end
of month t. We employ the past 3-month moving average of the market’s monthly RD to define the level of
return dispersion for month t. A month’s RD is defined as the cross-sectional standard deviation of returns on
100 BM- and size-based portfolios. The top (bottom) 30% observations of the return dispersion series are the
High-RD (Low-RD) periods, and the remaining periods are the Medium-RD periods. “CAPM” denotes the
market model proposed by (Sharpe, 1964; Lintner, 1965; Black, 1972). “FF3” denotes the Fama and French
(1993) three-factor model. “Carhart4” denotes the Carhart (1997) 4-factor model consisting of the FF3 factors
plus the Momentum factor. “FF5” denotes the Fama and French (2015) five-factor model. The sample period
in Panel A runs from July 1927 to December 2019, while the sample period in Panel B runs from July 1972
to December 2019, the sample period used in our tests. Heteroskedasticity-adjusted t-statistics are shown in
parentheses.

Return Dispersion

High Medium Low Low-High

Panel A: Jan 1927 - Dec 2019
rWML 0.55

(0.86)
1.07∗∗∗

(4.06)
1.86∗∗∗

(7.32)
1.31∗∗
(2.17)

rPTH −0.56
(−0.75)

0.49∗
(1.84)

1.37∗∗∗
(5.42)

1.93∗∗∗
(2.91)

αCAPM
WML

0.96∗
(1.85)

1.15∗∗∗
(4.37)

1.83∗∗∗
(6.95)

0.88
(1.51)

αCAPM
PTH

0.04
(0.07)

0.95∗∗∗
(4.09)

1.70∗∗∗
(7.22)

1.66∗∗∗
(2.95)

αFF3
WML

1.36∗∗∗
(2.76)

1.37∗∗∗
(5.17)

1.88∗∗∗
(7.27)

0.52
(0.94)

αFF3
PTH

0.64
(1.43)

1.15∗∗∗
(5.70)

1.57∗∗∗
(7.01)

0.93∗
(1.86)

αCarhart4
PTH

−0.20
(−0.69)

0.46∗∗∗
(2.72)

0.43∗∗∗
(2.40)

0.63∗
(1.85)

Panel B: July 1972 - Dec 2019
rWML −0.14

(−0.18)
1.68∗∗∗

(4.51)
1.50∗∗∗

(4.51)
1.64∗∗
(2.12)

rPTH −0.72
(−0.86)

1.71∗∗∗
(4.58)

0.67∗∗
(2.02)

1.39∗
(1.75)

αCAPM
WML

0.22
(0.31)

1.73∗∗∗
(4.66)

1.46∗∗∗
(4.32)

1.24
(1.55)

αCAPM
PTH

−0.02
(−0.02)

1.97∗∗∗
(6.12)

0.96∗∗∗
(3.13)

0.98
(1.33)

αFF3
WML

0.67
(0.94)

1.95∗∗∗
(5.29)

1.46∗∗∗
(4.30)

0.79
(0.99)

αFF3
PTH

0.57
(0.90)

1.82∗∗∗
(6.16)

0.99∗∗∗
(3.29)

0.42
(0.61)

αCarhart4
PTH

0.05
(0.13)

0.55∗∗∗
(2.41)

0.18
(0.80)

0.13
(0.31)

αFF5
WML

0.10
(0.12)

2.01∗∗∗
(4.89)

1.42∗∗∗
(3.86)

1.32
(1.44)

αFF5
PTH

−0.05
(−0.07)

1.66∗∗∗
(4.99)

0.86∗∗∗
(2.74)

0.91
(1.18)
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Table A5
Panel A: Pricing of PTH and Cross-Sectional Return Dispersion
This panel presents the alphas and factor loadings from time-series regressions of the high-minus-low 52-week high decile (PTH) on the well-documented sets of

asset-pricing factors for each return-dispersion state. We employ the past 3-month moving average of the market’s monthly RD to define the level of return dispersion
for month t. A month’s RD is defined as the cross-sectional standard deviation of returns on 100 BM- and size-based portfolios. The top (bottom) 30% observations
of the return dispersion series are the High-RD (Low-RD) periods, and the remaining periods are the Medium-RD periods. “BF3” denotes the Daniel, Hirshleifer, and
Sun (2020) 3-factor model. “HXZ4” denotes the Hou, Xue, and Zhang (2015) q-factor model. “HXZa” denotes the alternative q-factor model suggested by Novy-Marx
(2015b) where the ROE factor is decomposed into the lag-ROE and ∆ROE factors. “HXZ5” denotes the Hou et al. (2020) augmented q-factor model. “FF6” adds
the momentum factor (UMD) into the Fama-French 5-factor model (Fama and French, 2018). “NM5” denotes the fundamental momentum factor model suggested
by Novy-Marx (2015a) consisting of FF3 and the earnings-surprise factors (CAR4 and SUE). The factors are the market (MKT), post-earnings announcement drift
(PEAD), financing (FIN), size (ME or SMB), investment (IA), return on equity (ROE), lagged earnings-to-book equity (lagged-ROE), earnings innovations-to-book
equity (∆ROE), value (HML), conservative-minus-aggressive (CMA), robust-minus-weak (RMW), momentum (UMD), and earnings surprise (SUE and CAR4). The
sample is 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

High RD Medium RD Low RD

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5

α −2.25∗∗∗
(−3.31)

−0.97
(−1.56)

−1.20∗
(−1.88)

−1.40∗∗
(−2.24)

−0.13
(−0.37)

−1.45∗∗
(−2.29)

0.50
(1.26)

1.06∗∗∗
(3.53)

1.09∗∗∗
(3.54)

0.61∗
(1.87)

0.43∗
(1.85)

0.55∗
(1.76)

0.18
(0.56)

0.44
(1.24)

0.24
(0.72)

0.14
(0.38)

0.14
(0.62)

−0.14
(−0.41)

βMKT −0.52∗∗∗
(−3.90)

−0.55∗∗∗
(−4.33)

−0.77∗∗∗
(−5.54)

−0.48∗∗∗
(−3.28)

−0.34∗∗∗
(−4.58)

−0.72∗∗∗
(−7.11)

−0.39∗∗∗
(−4.62)

−0.52∗∗∗
(−7.69)

−0.63∗∗∗
(−9.29)

−0.45∗∗∗
(−6.35)

−0.43∗∗∗
(−8.62)

−0.55∗∗∗
(−8.03)

−0.24∗∗∗
(−2.80)

−0.25∗∗∗
(−2.50)

−0.37∗∗∗
(−3.85)

−0.20∗∗
(−2.12)

−0.33∗∗∗
(−5.31)

−0.29∗∗∗
(−3.09)

βPEAD 2.22∗∗∗
(5.57)

1.30∗∗∗
(5.46)

0.77∗∗∗
(3.33)

βFIN 0.78∗∗∗
(6.29)

0.46∗∗∗
(3.66)

0.71∗∗∗
(4.93)

βME 0.02
(0.10)

−0.21
(−1.09)

0.06
(0.26)

−0.67∗∗∗
(−5.69)

−0.82∗∗∗
(−5.95)

−0.59∗∗∗
(−5.06)

−0.56∗∗∗
(−3.79)

−0.75∗∗∗
(−5.13)

−0.51∗∗∗
(−3.56)

βIA 0.19
(0.43)

0.28
(0.72)

0.04
(0.10)

0.02
(0.12)

−0.05
(−0.28)

−0.03
(−0.17)

0.85∗∗∗
(3.57)

0.85∗∗∗
(3.40)

0.75∗∗∗
(3.25)

βROE 1.71∗∗∗
(6.38)

1.54∗∗∗
(4.62)

1.16∗∗∗
(8.48)

0.96∗∗∗
(7.32)

0.66∗∗∗
(2.82)

0.40
(1.64)

βlag−ROE 0.20
(0.68)

0.29∗
(1.71)

−0.17
(−0.68)

β∆ROE 1.80∗∗∗
(5.42)

1.16∗∗∗
(7.34)

1.01∗∗∗
(5.70)

βEG 0.59
(1.49)

0.63∗∗∗
(3.46)

0.63∗∗∗
(3.30)

βSMB −0.69∗∗∗
(−5.74)

−0.29∗
(−1.83)

−0.82∗∗∗
(−9.02)

−0.84∗∗∗
(−6.75)

−0.78∗∗∗
(−8.19)

−0.69∗∗∗
(−5.42)

βHML 0.39∗∗∗
(3.12)

0.26
(1.59)

0.07
(0.65)

−0.04
(−0.35)

0.14
(1.01)

0.51∗∗∗
(3.05)

βCMA 0.12
(0.61)

−0.09
(−0.58)

0.40∗∗
(2.04)

βRMW 0.27∗
(1.67)

0.38∗∗∗
(2.59)

0.09
(0.46)

βUMD 1.23∗∗∗
(11.75)

0.99∗∗∗
(12.80)

1.12∗∗∗
(12.58)

βSUE 1.47∗∗∗
(4.66)

1.17∗∗∗
(6.17)

0.87∗∗∗
(4.59)

βCAR4 1.60∗∗∗
(4.36)

0.76∗∗∗
(3.13)

1.00∗∗∗
(3.68)

R2
adj 0.56 0.56 0.56 0.57 0.81 0.62 0.43 0.53 0.52 0.55 0.75 0.56 0.30 0.30 0.37 0.33 0.62 0.41
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Table A5 (continued)
Panel B: Changes in alphas and factor loadings for PTH across across cross-sectional return dispersion levels
This panel presents the changes in alphas and factor loadings from the time-series regressions of the high-minus-low decile on the ratio of current price to 52-week high
price (PTH) conditional on the lagged cross-sectional return dispersion. The sample is from 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in
parentheses.

Low − High Medium − High Low − Medium

BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5 BF3 HXZ4 HXZ4a HXZ5 FF6 NM5

α 2.43∗∗∗
(3.23)

1.40∗∗
(1.97)

1.45∗∗
(2.00)

1.54∗∗
(2.13)

0.27
(0.64)

1.32∗
(1.83)

2.74∗∗∗
(3.50)

2.02∗∗∗
(2.94)

2.29∗∗∗
(3.22)

2.01∗∗∗
(2.84)

0.56
(1.31)

2.01∗∗∗
(2.84)

−0.32
(−0.62)

−0.62
(−1.34)

−0.85∗
(−1.86)

−0.47
(−0.96)

−0.29
(−0.90)

−0.69
(−1.50)

βMKT 0.28∗
(1.75)

0.31∗
(1.89)

0.40∗∗∗
(2.39)

0.28
(1.60)

0.01
(0.11)

0.43∗∗∗
(3.09)

0.13
(0.85)

0.04
(0.25)

0.14
(0.88)

0.03
(0.19)

−0.09
(−1.02)

0.17
(1.43)

0.14
(1.20)

0.27∗∗
(2.26)

0.27∗∗
(2.28)

0.25∗∗
(2.09)

0.10
(1.28)

0.25∗∗
(2.18)

βPEAD −1.45∗∗∗
(−3.14)

−0.93∗∗
(−2.00)

−0.52
(−1.57)

βFIN −0.07
(−0.35)

−0.32∗
(−1.79)

0.25
(1.31)

βME −0.58∗∗
(−2.11)

−0.53∗∗
(−2.21)

−0.57∗∗
(−2.09)

−0.69∗∗∗
(−2.66)

−0.61∗∗∗
(−2.55)

−0.65∗∗∗
(−2.49)

0.11
(0.58)

0.07
(0.35)

0.07
(0.40)

βIA 0.66
(1.32)

0.57
(1.22)

0.71
(1.48)

−0.17
(−0.36)

−0.34
(−0.77)

−0.07
(−0.16)

0.83∗∗∗
(2.88)

0.90∗∗∗
(2.94)

0.78∗∗∗
(2.76)

βROE −1.05∗∗∗
(−2.95)

−1.14∗∗∗
(−2.75)

−0.56∗
(−1.84)

−0.58
(−1.63)

−0.50∗
(−1.83)

−0.56∗∗
(−2.00)

βlag−ROE −0.37
(−0.96)

0.09
(0.27)

−0.46
(−1.53)

β∆ROE −0.79∗∗
(−2.09)

−0.64∗
(−1.73)

−0.15
(−0.64)

βEG 0.04
(0.08)

0.04
(0.10)

−0.01
(−0.02)

βSMB −0.09
(−0.61)

−0.40∗∗
(−1.97)

−0.13
(−0.87)

−0.55∗∗∗
(−2.72)

0.04
(0.28)

0.15
(0.82)

βHML −0.25
(−1.38)

0.25
(1.08)

−0.31∗
(−1.86)

−0.29
(−1.52)

0.06
(0.35)

0.55∗∗∗
(2.75)

βCMA 0.28
(1.03)

−0.20
(−0.84)

0.49∗∗
(1.98)

βRMW −0.18
(−0.73)

0.12
(0.53)

−0.30
(−1.24)

βUMD −0.11
(−0.80)

−0.24∗
(−1.81)

0.13
(1.06)

βSUE −0.60
(−1.62)

−0.30
(−0.81)

−0.30
(−1.11)

βCAR4 −0.60
(−1.32)

−0.84∗
(−1.91)

0.24
(0.66)
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Table A6
Panel A: Pricing of WML and Cross-Sectional Return Dispersion
This panel presents the alphas and factor loadings from time-series regressions of the high-minus-low price momentum decile (WML) on the well-documented sets of

asset-pricing factors for each return-dispersion state. We employ the past 3-month moving average of the market’s monthly RD to define the level of return dispersion
for month t. A month’s RD is defined as the cross-sectional standard deviation of returns on 100 BM- and size-based portfolios. The top (bottom) 30% observations
of the return dispersion series are the High-RD (Low-RD) periods, and the remaining periods are the Medium-RD periods. “BF3” denotes the Daniel, Hirshleifer,
and Sun (2020) 3-factor model. “HXZ4” denotes the Hou, Xue, and Zhang (2015) q-factor model. “HXZ4a” denotes the alternative q-factor model suggested by
Novy-Marx (2015b) where the ROE factor is decomposed into the lag-ROE and ∆ROE factors. ”HXZ5” denotes the Hou et al. (2020) augmented q-factor model.
“NM5” denotes the fundamental momentum factor model suggested by Novy-Marx (2015a) consisting of FF3 and the earnings-surprise factors (CAR4 and SUE).
The factors are the market (MKT), post-earnings announcement drift (PEAD), financing (FIN), size (ME or SMB), investment (IA), return on equity (ROE), lagged
earnings-to-book equity (lagged-ROE), earnings innovations-to-book equity (∆ROE), value (HML) and earnings surprise (SUE and CAR4). The sample is 1972:07 to
2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

High RV Medium RV Low RV

BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5

α −1.45∗
(−1.77)

−0.78
(−1.03)

−1.24∗
(−1.75)

−1.27
(−1.60)

−1.58∗∗
(−2.29)

0.51
(1.11)

0.95∗∗∗
(2.41)

0.79∗∗
(2.26)

0.31
(0.74)

0.26
(0.66)

0.92∗∗∗
(2.38)

0.74∗
(1.73)

0.38
(1.06)

0.27
(0.72)

−0.00
(−0.01)

βMKT −0.35∗∗
(−2.09)

−0.25
(−1.56)

−0.52∗∗∗
(−3.53)

−0.17
(−0.92)

−0.38∗∗∗
(−3.17)

0.04
(0.38)

−0.12
(−1.27)

−0.34∗∗∗
(−3.59)

−0.03
(−0.29)

−0.21∗∗
(−2.16)

0.06
(0.69)

0.00
(0.03)

−0.19∗∗∗
(−2.42)

0.07
(0.86)

−0.01
(−0.15)

βPEAD 2.36∗∗∗
(5.64)

1.46∗∗∗
(5.37)

0.90∗∗
(1.99)

βFIN 0.19
(1.01)

0.17
(1.19)

0.05
(0.29)

βME 0.63∗∗
(2.31)

0.34∗
(1.66)

0.67∗∗∗
(2.47)

0.10
(0.66)

−0.23
(−1.24)

0.23
(1.45)

0.25
(1.24)

−0.05
(−0.29)

0.32∗
(1.76)

βIA −0.47
(−0.90)

−0.21
(−0.47)

−0.63
(−1.30)

0.09
(0.42)

−0.15
(−0.74)

0.03
(0.12)

0.23
(0.80)

0.23
(0.81)

0.08
(0.28)

βROE 1.72∗∗∗
(5.38)

1.52∗∗∗
(3.92)

1.28∗∗∗
(7.11)

1.00∗∗∗
(5.25)

0.96∗∗∗
(3.37)

0.55
(1.62)

βlag−ROE −0.34
(−1.20)

−0.32
(−1.55)

−0.37
(−1.34)

β∆ROE 2.27∗∗∗
(7.41)

1.93∗∗∗
(10.21)

1.60∗∗∗
(8.16)

βEG 0.66
(1.30)

0.90∗∗∗
(3.63)

0.98∗∗∗
(2.98)

βSMB 0.47∗∗∗
(2.47)

−0.02
(−0.11)

0.08
(0.49)

βHML −0.08
(−0.42)

0.09
(0.54)

0.43∗
(1.91)

βSUE 1.80∗∗∗
(5.14)

1.87∗∗∗
(8.27)

1.59∗∗∗
(5.94)

βCAR4 1.51∗∗∗
(3.73)

0.66∗∗
(1.97)

0.53
(1.24)

R2
adj 0.56 0.56 0.56 0.57 0.62 0.43 0.53 0.52 0.55 0.56 0.30 0.30 0.37 0.33 0.41
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Table A6 (continued)
Panel B: Changes in alphas and factor loadings for WML across cross-sectional return dispersion levels
This table presents the changes in alphas and factor loadings from the time-series regressions of the high-minus-low price momentum decile (WML) conditional on the
lagged cross-sectional return dispersion. The sample is from 1972:07 to 2019:12. Heteroskedasticity-adjusted t-statistics are shown in parentheses.

Low − High Medium − High Low − Medium

BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5 BF3 HXZ4 HXZ4a HXZ5 NM5

α 2.37∗∗∗
(2.61)

1.52∗
(1.74)

1.62∗∗
(2.04)

1.55∗
(1.75)

1.57∗∗
(2.02)

1.96∗∗
(2.08)

1.74∗∗
(2.03)

2.03∗∗∗
(2.56)

1.58∗
(1.76)

1.83∗∗
(2.32)

0.40
(0.67)

−0.22
(−0.37)

−0.41
(−0.82)

−0.03
(−0.06)

−0.26
(−0.49)

βMKT 0.41∗∗
(2.17)

0.25
(1.37)

0.33∗∗
(1.96)

0.24
(1.20)

0.37∗∗∗
(2.51)

0.39∗∗
(1.98)

0.12
(0.66)

0.18
(1.02)

0.14
(0.65)

0.17
(1.08)

0.02
(0.18)

0.13
(0.95)

0.15
(1.20)

0.10
(0.76)

0.20
(1.55)

βPEAD −1.46∗∗∗
(−2.37)

−0.91∗
(−1.82)

−0.55
(−1.05)

βFIN −0.14
(−0.57)

−0.01
(−0.06)

−0.13
(−0.58)

βME −0.38
(−1.12)

−0.39
(−1.41)

−0.34
(−1.05)

−0.52∗
(−1.66)

−0.56∗∗
(−2.07)

−0.44
(−1.42)

0.14
(0.56)

0.17
(0.65)

0.10
(0.41)

βIA 0.70
(1.17)

0.44
(0.83)

0.71
(1.26)

0.56
(0.99)

0.05
(0.11)

0.66
(1.23)

0.14
(0.37)

0.38
(1.09)

0.05
(0.15)

βROE −0.76∗
(−1.78)

−0.97∗
(−1.89)

−0.43
(−1.18)

−0.53
(−1.21)

−0.33
(−0.97)

−0.45
(−1.15)

βlag−ROE −0.03
(−0.07)

0.02
(0.05)

−0.04
(−0.13)

β∆ROE −0.66∗
(−1.82)

−0.34
(−0.94)

−0.33
(−1.20)

βEG 0.31
(0.52)

0.24
(0.42)

0.08
(0.18)

βSMB −0.40
(−1.57)

−0.49∗
(−1.95)

0.10
(0.42)

βHML 0.51∗
(1.72)

0.17
(0.67)

0.34
(1.18)

βSUE −0.21
(−0.47)

0.07
(0.16)

−0.28
(−0.79)

βCAR4 −0.99∗
(−1.68)

−0.86
(−1.63)

−0.13
(−0.24)

62



References

Antoniou, C., J. A. Doukas, and A. Subrahmanyam. 2013. Cognitive dissonance, senti-

ment, and momentum. Journal of Financial and Quantitative Analysis 245–75.

———. 2016. Investor sentiment, beta, and the cost of equity capital. Management

Science 62:347–67.

Avramov, D., S. Cheng, and A. Hameed. 2016. Time-varying liquidity and momentum

profits. Journal of Financial and Quantitative Analysis 51.

Avramov, D., and T. Chordia. 2006. Asset pricing models and financial market anomalies.

The Review of Financial Studies 19:1001–40.

Ball, R., and P. Brown. 1968. An empirical evaluation of accounting income numbers.

Journal of accounting research 159–78.

Barberis, N., A. Shleifer, and R. Vishny. 1998. A model of investor sentiment. Journal

of financial economics 49:307–43.

Barroso, P., A. L. Detzel, and P. F. Maio. 2017. Managing the risk of the low-risk

anomaly. In 30th Australasian Finance and Banking Conference.

Barroso, P., R. M. Edelen, and P. Karehnke. 2019. Crowding and tail risk in momentum

returns. Journal of Financial and Quantitative Analysis forthcoming.

Barroso, P., and P. Santa-Clara. 2015. Momentum has its moments. Journal of Financial

Economics 116:111–20.

Beaver, W., M. McNichols, and R. Price. 2007. Delisting returns and their effect on

accounting-based market anomalies. Journal of Accounting and Economics 43:341–68.

Black, F. 1972. Capital market equilibrium with restricted borrowing. The Journal of

business 45:444–55.

Byun, S.-J., and B. Jeon. 2018. Momentum crashes and the 52-week high. Available at

SSRN 2900073 .

Carhart, M. M. 1997. On persistence in mutual fund performance. The Journal of finance

52:57–82.

Chan, L. K., N. Jegadeesh, and J. Lakonishok. 1996. Momentum strategies. The Journal

of Finance 51:1681–713.

Cochrane, J. H. 1991. Production-based asset pricing and the link between stock returns

and economic fluctuations. The Journal of Finance 46:209–37.

63



Cooper, M. J., R. C. Gutierrez, and A. Hameed. 2004. Market states and momentum.

The journal of Finance 59:1345–65.

Daniel, K., D. Hirshleifer, and A. Subrahmanyam. 1998. Investor psychology and security

market under-and overreactions. the Journal of Finance 53:1839–85.

Daniel, K., D. Hirshleifer, and L. Sun. 2020. Short-and long-horizon behavioral factors.

The Review of Financial Studies 33:1673–736.

Daniel, K., and T. J. Moskowitz. 2016. Momentum crashes. Journal of Financial Eco-

nomics 122:221–47.

DeMiguel, V., A. Martin-Utrera, F. J. Nogales, and R. Uppal. 2020. A transaction-cost

perspective on the multitude of firm characteristics. The Review of Financial Studies

33:2180–222.

Fama, E. F., and K. R. French. 1993. Common risk factors in the returns on stocks and

bonds. Journal of Financial Economics 33:3–56.

———. 2006. The value premium and the capm. The Journal of Finance 61:2163–85.

———. 2015. A five-factor asset pricing model. Journal of financial economics 116:1–22.

———. 2018. Choosing factors. Journal of Financial Economics 128:234–52.

Fama, E. F., and J. D. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests.

Journal of political economy 81:607–36.

Foster, G., C. Olsen, and T. Shevlin. 1984. Earnings releases, anomalies, and the behavior

of security returns. Accounting Review 574–603.

Gebhardt, W. R., S. Hvidkjaer, and B. Swaminathan. 2005. Stock and bond market

interaction: Does momentum spill over? Journal of Financial Economics 75:651–90.

George, T. J., and C.-Y. Hwang. 2004. The 52-week high and momentum investing. The

Journal of Finance 59:2145–76.

George, T. J., C.-Y. Hwang, and Y. Li. 2018. The 52-week high, q-theory, and the cross

section of stock returns. Journal of Financial Economics 128:148–63.

Ginsburgh, V. A., and J. C. Van Ours. 2003. Expert opinion and compensation: Evidence

from a musical competition. American Economic Review 93:289–96.
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